
Rice is a staple for half the world’s population, thus its impact on 
land and water use is immense. Standard production practices using 
continuous flooding (CF) are resource intensive and contribute significant 
global methane emissions. The technique of alternate-wetting-drying 
(AWD) uses a more controlled irrigation strategy that can significantly 
reduce methane emissions as well as water use and pumping costs. These 
three established benefits of AWD have been well documented in previous 
papers (see Overview of AWD1). Aside from these primary benefits, recent 
literature suggests there are many potential secondary benefits that have 
yet to be fully reviewed. These co-benefits and their site-specific conditions 
or limitations are reviewed in this paper.
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Production benefits   
Reduced flooding using AWD can improve soil properties 
for mechanization and diversified crop rotation, making 
rice a more suitable crop for rotation with upland (non-
rice) crops. This is increasingly important as paddy-upland 
systems expand globally2. Additionally, the technologies 
that accompany AWD (i.e., irrigation upgrades, moisture 
monitoring and laser land leveling or LLL) bring improved 
control over crop growth, uniformity, and field operations.  

How?

1. Soil structure and diversified crop rotation. Poor soil structure from puddling and 
continuous flooding is the greatest challenge to rotating rice with other crops3.  Reduced 
flooding using AWD may improve soil structure for upland crops following rice due 
to increased soil aggregation and macroporosity4. Effects on soil structure may be most 
apparent at lower depths from deeper root accumulation and improved aeration.  Improved 
soil structure may also facilitate the move to dry-direct seeding and aerobic rice5.

Site-specifics and limitations:
AWD is most effective in lowland finer textured soils that hold moisture6. These soils are 
also particularly difficult to rotate between paddy rice and upland crops like maize, yet 
they often have the greatest potential for fertile, continuous cropping7. The benefits of 
AWD rice and upland crop rotation are greatest under a reduced plow pan density, high 
soil organic matter, and moderately acidic pH8.  Higher pH soils may experience increased 
salinity or soil structure problems upon drying with AWD9. Gradual improvement to soil 
structure using AWD and residue incorporation while increasing drainage/percolation 
could mitigate these problems10. Like no-till practices, long-term improvement to soil using 
AWD and residue may take several seasons or experience an initial “yield drag.” Soil types 
most suitable for AWD may also be best for aerobic rice11.

 
2. Mechanization. Improved soil structure (i.e., macroporosity and aggregation) from 

AWD may provide better tilth, traction, and soil load bearing capacity12.  This improves 
machinery efficiency, along with the flexibility of equipment types (a limiting factor in 
current rice mechanization and its adoption).

Site-specifics and limitations:
As with crop rotation problems, heavy clay soils can be most difficult for mechanization 
when wet. Additional limitations to mechanization include small farm sizes and poor 
access to equipment.  

3. Soil moisture control. Improved irrigation management is the principle of AWD.  Irrigation 
equipment upgrades along with the use of LLL and field water level tubes to regulate soil 
moisture  can aid in more efficient and timely harvesting, planting, application of fertilizer, 
and meeting of crop water needs13. This can improve yields, crop turnaround potential, 
and resiliency to weather volatility14. 

Site-specifics and limitations:
Optimal soil moisture control requires level fields.  Access to reliable season-long irrigation 
water is a limitation to AWD adoption and will require improvements to infrastructure and 
investments at the regional and farm level15.  



The Diverse Benefits of Alternate Wetting and Drying (AWD) 3

Yield  
Results of some 60 peer-reviewed studies suggest that safe 
AWD (maintaining a 15 cm below soil surface water level 
threshold) does not reduce yields if implemented correctly and 
may potentially increase yields under specific conditions16.  
Still, without proper management the risk of drought stress 
is increased in AWD. Although current rice cultivars are 

How?

1. Pest, disease and weed management. A shift in pest, disease, and weed types is expected  
when switching from CF to AWD.  Although AWD can effectively control golden apple 
snail, brown plant hopper, false smut, algae and other aquatic weeds, it can increase the 
occurance of non-aquatic weeds, rice blast, bacterial leaf blight, and root-knot nematode18. 
Certain disease reduction from AWD has been recorded from reduced humidity within the 
crop canopy, and improved systemic resistance19. AWD may increase pathogen survival 
and transfer between rotation of related aerobic crops20. Improved knowledge of IPM is 
likely necessary under AWD.

Site-specifics and limitations:
Fields with a known history of the issues associated with AWD require farmer discretion 
of water-pest relationships. AWD increases the need for knowledge-intensive farm 
management with the use of new or alternative practices and equipment.   

2. Root and tiller development. Rice root depth/density is often enhanced with AWD, 
which can equate to better drought, disease, and lodging resistance, as well as increased 
nutrient and water uptake21.  This is due to improved soil structure for root exploration and 
oxygenation22.  AWD can also increase effective tiller development, suggesting seeding rate 
can be reduced, and yield increased23.

Site-specifics and limitations:
Deeper rooting due to reduced compaction and plow pan density may be most beneficial 
in areas with root-accessible water tables that are prone to drought or wind lodging24. Clay 
soil types prone to compaction or anoxia may also benefit most.  

3. Phytotoxin removal. Increased aerobic periods using AWD can reduce phytotoxins that 
accumulate from CF and anoxia such as phenolic acids, hydrogen sulphide, and excess 
iron and manganese25.

Site-specifics and limitations:
Low percolation rates under CF and residue incorporation are known causes of phytotoxin 
buildup. Limited percolation along with poor irrigation water can also increase salinity 

severely sensitive to water stress, improved breeding for aerobic conditions may 
eventually raise yield potentials above that of CF due to the benefits of aeration on 
soil physicochemical properties and plant morphology.  Studies on biotic stressors 
(pests, disease, weeds) have shown that AWD may reduce some pests, albeit 
increasing others. Certainly, some pests adapted to millennia of flooded culture 
are disrupted in aerobic environments. It is foreseeable that the rotation between 
flooded and aerobic varieties may provide an important strategy towards IPM in 
the future17.   
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and alkalinity. Although AWD may increase salinity in the short-term it may reduce long-
term salt evapoconcentration by reducing irrigation input and with residue incorporation 
this can further ameliorate the effect on crops.   

4. Soil fertility and quality. Although AWD may reduce the availability of certain nutrients 
like phosphorous and calcium compared to CF, it can enhance fertility in some soils by 
increasing zinc and nitrogen uptake, and by increasing mineralizable nutrients from organic 
matter decomposition26. Increased organic matter decomposition from AWD reduces the 
need for complete removal of crop residue (a standard practice due to its impediment to 
planting)27.  Although incorporation of crop residue can increase methane emissions in CF 
systems, this is minimized in more aerobic soils utilizing AWD or upland crop rotations. The 
additional benefits of residue on soil quality and soil carbon make residue incorporation 
advantageous for non-CF systems28. 

Site-specifics and limitations:
Nutrient deficiencies for a given soil will help guide irrigation management given the 
known relationship of nutrient availability and flooding. Lab nutrient analysis can suggest 
the potential gain or decline to soil fertility for a specific soil under aerobic conditions. As a 
general principle, fertilizer N and P requirements could be higher for rice grown on aerobic 
soil than on submerged soil. A higher need for accurate N fertilizer application can arise 
from lower microbial nitrogen fixation. Although denitrification and N leaching may occur 
if fertilizer is improperly applied under AWD, total N losses are normally negligible due to 
the increase in available forms of nitrogen and overall increase in nitrogen use efficiency29. 
Zn availability is normally increased under aerobic regimes on acid soils, but high pH soils 
may experience Zn and Fe reduction30.  Although studies show that the conversion from 
flooded to aerobic soils reduces SOC quantity and ability of soils to store carbon, there is 
strong evidence that aerobic regimes improve the quality of plant-beneficial SOC fractions 
and that total SOC can increase given proper residue management31.  

5. Soil health. Soil microbial and invertebrate activity in the root zone may be increased 
under aerobic conditions leading to enhanced nutrient cycling and biological tillage32. 
This allows the recycling of organic nutrients for proceeding crops that are often locked 
up in submerged soils. Reduced flooding is known to increase soil macrofauna such as 
earthworms that improve soil physicochemical properties33.  

Site-specifics and limitations:
Residue incorporation in combination with AWD can improve microbial activity and 
diversity compared with CF34. Increased microbial activity may require additional fertilizer 
inputs initially due to immobilization and reduced biological nitrogen fixation from algae. 
Benefits from residue incorporation normally occur after several seasons.
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Human health 
Flooded rice is associated with increased mosquito and water 
borne diseases35. Additionally, AWD has been shown to 
improve grain quality ─ a concern for millions of people in 
developing Asian countries. 

How?

1. Mosquito and water borne diseases. The use of intermittent flooding periods of less 
than one week using AWD can disrupt mosquito life cycles during their normal two week 
aquatic larval stage36.  Snails are also important vectors of disease that can be reduced under 
AWD along with other water transmitted pathogens. Regions with high risk of malaria, 
schistosomiasis, Japanese encephalitis, dengue, and leptospirosis may consider AWD as a 
public health strategy.

2. Grain quality. Zinc deficiency affects a third of the global population, mostly in high rice 
consuming regions of Southeast Asia. More aerobic regimes using AWD can effectively 
increase grain zinc content37.  Rice is also a primary source of dietary heavy metal exposure38.  
Aerobic conditions reduce the availability of arsenic and mercury to plants39, however, an 
increase in cadmium uptake is also possible40. Reduced irrigation inputs with AWD can 
also reduce the deposition of other source-water contaminants in paddy soils.   

Site-specifics and limitations:
Risk of heavy metal accumulation for a given environment will help guide irrigation and 
rotation management for risk mitigation. Areas near municipal waste are prone to cadmium 
contamination. High levels of naturally occurring arsenic are known to occur in deep well 
water in some parts of South Asia. Acidic soils or fine textured wetland sediments increase 
the risk of heavy metal crop uptake41.
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Environment 
Asia is increasingly vulnerable to environmental issues and 
land use competition, which inherently involves rice.  Although 
rice can have a low environmental impact compared to other 
cropping systems, it is an important part of land and water 
use competition with biodiversity in some of the world’s most 
sensitive ecosystems.  Rice farming uses almost 50% of total 
water consumption in Asia and contributes to land, air and 
water quality degradation42.  In some cases, AWD can reduce 
this impact.     

How?

1. Erosion/runoff and ecosystems. CF practices can increase overland flow erosion, 
which is a significant source of agrochemical pollution and nutrient-bound sediment in 
waterways43.  Compared to CF, AWD has been shown to reduce surface runoff of nitrogen 
and phosphorous by 30%, and pesticides by 89% in some studies44. AWD could further 
reduce runoff in upland crops after rice by facilitating residue incorporation, soil structure 
improvement and reduced tillage45. Additionally, reducing water use with AWD would 
increase water available to off-farm ecosystems46.   

Site-specifics and limitations:
Strong monsoonal rains can raise paddy flood levels beyond bunds. Cascade irrigation 
promotes sediment and nutrient loss towards basins. Leaching of pollutants in solution, 
especially nitrate, may be increased under AWD if bypass water losses are increased 
from cracking47. N losses can be avoided in high CEC soils and with proper fertilizer and 
irrigation application on cracked soil.  Reduced tillage may be most successful in loamy or 
high organic matter soils. 

2. Straw burning. Straw burning is a significant source of air pollution and greenhouse 
gas emissions from Asia. Rice straw is often burned and not incorporated due to labor 
constraints and the impediment to planting of following crops48. Increased aeration from 
AWD improves straw decomposition and the ability to incorporate residue without 
hindrance to field preparation49.   

Site-specifics and limitations:
Disease occurance may increase from incorporating residues, as opposed to burning or 
removing. Straw incorporation increases methane emissions and can reduce rice yields 
under continuously flooded culture. Coarse textured soils may benefit the most from 
straw incorporation and improved aerobic decomposition. Combine harvesters can aid in 
returning residues and reducing labor cost.       
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Socioeconomics  
Rice is the staple crop of the developing world and an 
important part of its socioeconomic challenges. Methods such 
as AWD that increase farm efficiency, and reduce resource 
competition can be effective socioeconomic solutions.   

How?

1. Farm profits. A primary benefit of AWD is the reduced pumping costs from lower water 
use.  This often equates to improved farm profits, although this is site-specific depending 
on pump fees.  As water scarcity increases, AWD will be of increasing value.   

Site-specifics and limitations:
Studies show that water payment schemes that incentivize water saving are critical in the 
success of AWD.  Areas with fixed or flat-rate seasonal pump costs may not benefit from 
AWD. Even in areas where AWD could improve yields, reduced pump costs will be the 
primary driver of adoption given that they often account for 25% of production costs50.  

2. Water competition. Reduced water consumption using AWD has been shown to reduce 
upstream-downstream water conflicts and improve social equity51. 

3. Climate change adaptation. CF and rainfed rice cultivation is highly dependent on 
seasonal water supply that is increasingly hard to predict. Properly implemented AWD 
with improved irrigation systems can help farmers adapt to less predictable weather and 
drought52.  

4. Impacting low-income sectors. As a low-cost and easy to implement technology, AWD 
can improve livelihoods  especially for low-income smallholders where yields or farm 
profits can be improved53.   
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Conclusion and future research

Although continuously flooded rice has proven to be sustainable in terms of yields and 
soil quality for rice only cropping, changing resource limitations require a paradigm shift 
in rice farming.  AWD is an effective solution to sustaining or improving rice yields in the 
future under increasing water limitations and the need to intensify land productivity using 
mechanization and crop rotation.  In addition to the core benefits of AWD (reduced emissions, 
water use, and pump costs), studies show that additional co-benefits exist that can improve 
agronomic, human health, environmental, and socio-economic factors in rice production.  
Successful adoption of AWD and its benefits will require discretion of site-specific conditions 
such as climate, soil type, pests, rotation type and irrigation access.  Understanding these site-
specifics and the potential trade-offs of more aerobic regimes in rice will require additional 
research.  Without an exhaustive list, research is needed on the co-benefits of AWD regarding:  

•	 The potential of improved aerobic or AWD rice varieties in the future regarding yield/
water tradeoffs, as well as pests and disease.

•	 Environmental impacts of water conservation from AWD on natural resource economics, 
ecosystem services, human health, and biodiversity.

•	 Effects of AWD on gender equity and labor productivity
•	 The yield of aerobic crops used in rotation with AWD vs. flooded rice under varying soil 

types and environments.
•	 Soil organic carbon quantity vs. quality comparing anaerobic and aerobic decomposition, 

along with optimized residue management for AWD.
•	 Rice-aerobic crop rotation as a pest management strategy.
•	 Effects of long-term AWD on soil salinity.
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