Upland: A Simulation Model for Water Balance in Upland Soils

M.V.R. Murty and M. Kondo
The International Rice Research Institute (IRRI) was established in 1960 by the Ford and Rockefeller Foundations with the help and approval of the Government of the Philippines. Today IRRI is one of 15 nonprofit international research centers supported by the Consultative Group on International Agricultural Research (CGIAR – www.cgiar.org).

IRRI receives support from several CGIAR members, including the World Bank, European Union, Asian Development Bank, International Fund for Agricultural Development, International Development Research Centre, Rockefeller Foundation, and agencies of the following governments: Australia, Belgium, Canada, People’s Republic of China, Denmark, France, Germany, India, Islamic Republic of Iran, Japan, Republic of Korea, The Netherlands, Norway, Philippines, Spain, Sweden, Switzerland, Thailand, United Kingdom, United States, and Vietnam.

The responsibility for this publication rests with the International Rice Research Institute.

IRRI Technical Bulletins

The IRRI Technical Bulletin is a rapid means of presenting results of research on a specialized technical subject such as the development of experimental methods, specialized software, or other solutions to complex research problems.

Copyright International Rice Research Institute 2001

Mailing address: DAPO Box 7777, Metro Manila, Philippines
Phone: +63 (2) 580-5600
Fax: +63 (2) 580-5699
Email: irri@cgiar.org
Home page: www.cgiar.org.irri
Riceweb: www.riceweb.org
Rice Knowledge Bank: www.knowledgebank.irri.org
Courier address: Suite 1009, Pacific Bank Building
6776 Ayala Avenue, Makati City, Philippines
Tel. +63 (2) 891-1256, 891-1174, 891-1258, 891-1303

Suggested citation:

ISBN 971-22-0162-7
ISSN 0074-7807
Even though the upland rice area is 12% of the total world rice area, it contributes only 4% to the total rice production (Pandey 1996). Average grain yields are about 1 t ha\(^{-1}\) (IRRI 1997). Rice cultivation in rainfed uplands usually takes place in unbunded and bunded parcels. Puddling is not practiced and the only source of water is rain. Thus, in these lands, water is generally the main constraint. Under such situations, it is important to understand water balance processes. To understand water capture by rice roots, we must quantify, as accurately as possible, the evaporation from the bare soil between rows. In this context, we developed a simulation model for water balance in upland soils based on earlier models developed mainly for lowland rice, such as that of Wopereis et al (1996).

UPLAND, programmed under the Fortran Simulation Environment (FSE, version 2.1), was developed by van Kraalingen (1995). The FSE system has a main program with a driver and a weather utility system along with a general utility library. The FSE driver handles the simulation loop by initializing, calculating the rate, integrating, and terminating all the models via ITASK = (1or2or3or4) calls through MODELS. In addition, the driver runs a loop across each rerun, handles input and output files, and reads weather data using TTUTIL and WEATHER libraries (van Kraalingen 1995) (Fig. 1).

UPLAND, a soil water balance and nitrate leaching model, is one-dimensional. It can be used for freely drained soil as well as soils with impeded drainage. The nitrate leaching part of the model is not
yet exhaustive for inherent soil nitrogen transformations. We have not attempted to include the transformation processes; future attempts will be made to do this. The current version indicates the importance of nitrate adsorption-desorption by the solid phase in tropical uplands; later versions will attempt to simulate nitrogen transformations. In temperate soils, little or no nitrate is adsorbed on the soil surface. In the tropical soils of Asia, however, particularly highly weathered acidic soils can have a significant amount of nitrate adsorption by the solid phase (George et al. 1996). Our laboratory measurements also confirm this view.

Figure 2 shows a general water balance approach for soils.

\[\Delta W = I + R + UF - DF - E - RF \]

where

- \(\Delta W \) = change in water storage
- \(I \) = irrigation
- \(R \) = rainfall
- \(UF \) = upward flux
- \(DF \) = downward flux
- \(E \) = evaporation
- \(RF \) = runoff

All the units are in mm m\(^{-1}\). The present model follows the same principle. The downward flux from the last soil compartment is considered as deep drainage.

A complete listing of the source code as well as input files is provided in the appendices.

Input requirements

The following inputs are needed for UPLAND:

- Number of layers
- Thickness of layers
- Initial volumetric moisture content (layerwise)
- Irrigation table
- Irrigation switch
- Free drainage/impeded drainage switch
- Saturated hydraulic conductivity
- van Genuchten alpha parameter
- van Genuchten lambda parameter
- van Genuchten n parameter
- van Genuchten residual water (-)
- Saturated hydraulic cm d\(^{-1}\) conductivity
- Nitrate applied kg ha\(^{-1}\)
- Initial nitrate concentration ml cm\(^{-1}\)
- Bulk density of the soil (layerwise) g cc\(^{-1}\)

For nitrate leaching (optional)

Fig. 2. Vertical profile of water balance components.
PARAA Parameter A for the nitrate equilibrium equation
PARAB Parameter B for the nitrate equilibrium equation
PARAC Parameter C for the nitrate equilibrium equation
PARAD Parameter D for the nitrate equilibrium equation
SET Breakaway point for choosing the right line

For the nitrate equilibrium equation

NCONT Total nitrate concentration \(\mu \text{mol cm}^{-3} \)
NCONW Nitrate concentration in water \(\mu \text{mol cm}^{-3} \)
NCONS Nitrate concentration in solids \(\mu \text{mol cm}^{-3} \)
NCONCH Change in nitrate concentration

Background

Soil water balance

Water balance simulation has been attempted in the past by Jones and Kinsey (1986), Wopereis et al (1996), and Penning de Vries et al (1989), among many others. Upland rice culture has been defined as rice grown in rainfed banded or unbanded fields with naturally well drained soils and no surface water accumulation (IRRI 1984). Based on this, some simulation models were built taking into account that rainfall does not stay in the soil but drains to field capacity, usually one day at a time, as in SAHEL (Wopereis et al 1996). In some water balance models generally designed for lowlands, the contribution of capillary rise was made from the water table, as was done in PADDY (Wopereis et al 1996). However, upland soils do not usually have a shallow water table. Often, the groundwater table might be very deep, making the contribution from the water table to the surface layer negligible. Under such situations, following a rainfall or irrigation event, evaporation losses from surface soils will become a dominant factor in driving subsurface moisture up following steep potential gradients. This will be a basis for redistributing moisture within the profile. CERES-type models have a similar approach based on Darcy’s principle (Gabrielle et al 1995). A similar approach has been attempted in the present model, which looks at the redistribution of moisture within the profile using Darcy’s principle.

To some extent, UPLAND retains the flow structure developed in PADDY. Basically, UPLAND was developed using PADDY as an example. Some of the subroutines used in PADDY were retained with minor adaptations.

Even though uplands with sandy to loamy-type soils are generally freely drained, upland soils with high clay content are not freely drained. In such soils, a major source of rainwater loss is through surface runoff. A drainage switch, SWITFD, with 0 for impeded drainage and 1 for free drainage, was retained from PADDY. The simulation of water balance for free drainage was similar to that of PADDY under ponded water conditions except for upward flux.

At the beginning, the model calculates the downward and upward fluxes using Darcy’s principle. But upward fluxes are limited to a maximum such that the layer above will not have more than field capacity. Similarly, downward fluxes are limited to a maximum from any layer such that it will not drain below field capacity if that layer has a water content higher than the field capacity.

\[
I = 1
\]
\[
\text{DO WHILE (I.LE.(NL-1))}
\]
\[
\text{DMS(I) = (MS(I+1)-MS(I))}
\]
\[
\text{CONDCA(I) = (SQRT(KMS(I)*KMS(I+1)))}
\]
\[
\text{DFLUX(I) = (CONDCA(I)*((DMS(I)+TKLM(I))/TKLM(I)))*10.}
\]
\[
\text{IF (DFLUX(I) .GE.0.) .AND. (MS(I) .LE. 300.) THEN}
\]
\[
\text{DFLUX(I) = MIN(10.*KSAT(I),MIN((WL(I)-WLFC(I)),&(WLST(I+1)-WL(I+1))/DELT))}
\]
\[
\text{ELSE IF (DFLUX(I).GE.0.) .AND. (MS(I).GT.300.) THEN}
\]
\[
\text{DFLUX(I) = MIN(DFLUX(I),(WLST(I+1)-WL(I+1))/DELT})
\]
\[
\text{ELSE}
\]
\[
\text{DFLUX(I) = 0.}
\]
\[
\text{END IF}
\]
\[
\text{UDFLUX(I) = (CONDCA(I)*((DMS(I)+TKLM(I))/TKLM(I)))*10.}
\]
As with PADDY, in UPLAND the flow of the algorithm starts with ponding water. It checks whether there is standing water (WLO). When the field has standing water, the model calculates downward fluxes using the same approach as PADDY. In this case, it assumes that there is no upward flux, as all layers will be at least up to field capacity.

When the standing water partly contributes to the evaporative demand, a similar approach is used as in PADDY. When there is no standing water, which is usual for most of the growing season for rainfed upland rice, downward fluxes (DFLUX) are used. Similarly, upward fluxes (UDFLUX) are used with the DNFL1 subroutine. DFLUX and UDFLUX are calculated at the beginning.

Actual evaporation

When there is standing water to either completely or partially fulfill the evaporative demand, soil evaporation will be at a potential rate. This potential evaporation rate is calculated by the subroutine ETCPOT. In situations when there is no ponded water on the surface, a common occurrence in the uplands, a reduction factor is calculated. This reduction factor is based on the relationship between the ratio of potential to actual evaporation and the relative water content of the surface layer. Finally, to obtain the actual evaporation rate, potential evaporation with the soil background supplied by ETCPOT is multiplied by the reduction factor.

Calculate evaporation rate from soil surface (mm/d)

\[
Z_{DD} = \frac{(WCL(I) - WCAD(I))}{(WCST(I) - WCAD(I))}
\]

\[
RFDD = \text{LINT}(RFDDTB, I, RFDD, Z_{DD})
\]

\[
EVSW = EVSCS \times RFDD
\]

\[
EVSW_{S} = EVSW
\]

Changes in soil water

After calculating the water flux rates, calculate changes in water contents (WLCH) for all the soil layers.

\[
I = 1
\]

DO WHILE (I.LE.NL)

IF (I.EQ.1) THEN

\[
WLCH(I) = WLFL(I) - WLFL(I+1) - TRWL(I) - EVSW_{S} + UDFLUX(I)
\]

ELSE

\[
WLCH(I) = WLFL(I) - WLFL(I+1) - TRWL(I) + UDFLUX(I) - UDFLUX(I-1)
\]

END IF

END DO
Integration over the day is carried over for the time step of 1 day for all state variables as in PADDY.

Potential evaporation

Potential evaporation from free water surfaces and bare soil as well as evapotranspiration were calculated by Penman (1948). The current model uses these main concepts built into a subroutine, ETPOT, developed by Bouman and incorporated in ORYZA-W (Wopereis et al 1996). Full documentation is available in Wopereis et al (1996). Potential evaporation means there is no limitation to the supply of water. This is mainly driven by environmental parameters such as radiation load and wind forces. Radiation load is calculated by estimating the energy balance of the surface and this differs for open water, soil background, and crop surface. It also considers latent heat of evaporation of water. The drying power in Penman’s equation takes into account vapor pressure deficits in the atmosphere along with a wind speed function. A combination of these two terms is the potential evaporation of that surface.

Nitrate leaching

Nitrogen is one of the major nutrients that limit crop growth. When crop growth depends entirely on rainfall, it is often difficult to assess whether N or water is the limiting factor in rainfed rice cultivation. It becomes essential to resort to a simulation of these factors in soils to have an idea of their availability. Nutrient losses, particularly nitrate loss through leaching below the root zone, are of major concern. In the upland soils of tropical Asia, the amount of nitrate leaching depends on the quantity and intensity of rainfall and on the nitrate adsorption behavior by the solid phase of the soil. In arid soils, this was not considered highly important (van Keulen and Seligman 1987). If the soils are able to adsorb a greater quantity of nitrate applied, it will be available to the roots for a longer time. Experiments conducted on upland soils of Asia have shown that nitrate adsorption-desorption characteristics vary greatly from one area to another.

Nitrate adsorption by the solid phase, and thereby the equilibrium between the solid and solution phase, can be simulated through adsorption isotherms represented by the equation

\[Y = aX^b \]

where a and b are constants.

To simplify, the curve was represented by two sets of linear equations (Fig. 3):

\[Y = aX \]

and

\[Y = cX + d \]

The first equation describes the initial part of the equilibrium and the second set describes the latter part of the equation. Saito (1990) used a similar linear approach for nitrate adsorption-desorption equilibrium.

Simulation

The model first calls all the input parameters, then it reads the nitrate application, if any, from the input file and the application is added to the top layer as nitrate concentration (\(\mu\text{mol cm}^{-3}\)).
\[GNAPP = \text{LINT}(NAPPTB, INAPP, DOY) \]
\[NCONAP = GNAPP / ((TKL(1) / 10.) * 1.4) \]

\[I = 1 \]

\[\text{DO WHILE (I.LE.NL)} \]
\[\text{IF (I.EQ.1)} \]
\[NCONT(I) = NCONT(I) + NCONAP \]
\[\text{ELSE} \]
\[NCONT(I) = NCONT(I) \]
\[\text{END IF} \]
\[I = I + 1 \]
\[\text{END DO} \]

Subsequently, nitrate distribution between soil solids and solution is simulated by using the linear equations for equilibrium. For this, the parameters for different layers (PARAA, #PARAB, #PARAC, #PARAD, and SET) are used. First, the load (NLODW) in the soil water is estimated and then nitrate concentration in water (NCONW) and nitrate concentration in solids (NCONS) is calculated:

\[\text{NLODW}(I) = \frac{(NCONT(I) - (PARAB(I) * BDSOIL(I)))}{(WCL(I) + (PARAA(I) * BDSOIL(I)))} \]

\[\text{IF (NLODW(I).LT.SET(I)) THEN} \]
\[NLODW(I) = \text{NLODW}(I) \]
\[\text{ELSE} \]
\[NLODW(I) = \frac{(NCONT(I) - (PARAD(I) * BDSOIL(I)))}{(WCL(I) + (PARAC(I) * BDSOIL(I)))} \]
\[\text{END IF} \]

\[\text{NCONW}(I) = \text{NLODW}(I) * WCL(I) \]
\[\text{NCONS}(I) = NCONT(I) - NCONW(I) \]
\[\text{IF (NCONS(I).LE.TINY) THEN} \]
\[NCONS(I) = 0.0 \]
\[\text{ELSE} \]
\[NCONS(I) = \text{NCONS}(I) \]
\[\text{END IF} \]

\[\text{NLODS}(I) = \text{NCONS}(I) / BDSOIL(I) \]
\[\text{I = I + 1} \]
\[\text{END DO} \]
Then the total nitrate in the soil solution and in the soil solids is calculated:

\[
I = 1 \\
\text{DO WHILE (I.LE.NL)} \\
\quad \text{NTOTW(I) = (NCONS(I) * (TKL(I)/10.) * 1.4)} \\
\quad \text{NTOTS(I) = (NCONS(I) * (TKL(I)/10.) * 1.4)} \\
\quad \text{NTOT(I) = NTOTW(I) + NTOTS(I)} \\
\quad I = I+1 \\
\text{END DO}
\]

Rate calculations. In the rate calculation sections, the amount of nitrate coming into a compartment (NIN) as well as the amount of nitrate going out of that compartment (NOUT) is calculated. These depend on water fluxes going out of the compartment (WLFL) and upward fluxes going out of and into that compartment (UDFLUX).

*
\begin{verbatim}
*----Nitrate fluxes---------
I = 1 \\
\text{DO WHILE (I.LE.NL)} \\
\quad \text{IF (I.EQ.1) THEN} \\
\quad \quad \text{NIN(I) = NLODW(I+1) * (UDFLUX(I)/10.}} \\
\quad \quad \text{NOUT(I) = NLODW(I) * (WLFL(I+1)/10.)} \\
\quad \text{ELSE IF (I.EQ.NL) THEN} \\
\quad \quad \text{NIN(I) = (NLODW(I-1) * (WLFL(I)/10.))} \\
\quad \quad \text{NOUT(I) = (NLODW(I) * (WLFL(I+1)/10.)}} \\
\quad \text{ELSE} \\
\quad \quad \text{NIN(I) = (NLODW(I+1) * (UDFLUX(I)/10.) + (NLODW(I-1) * & (WLFL(I)/10.))} \\
\quad \quad \text{NOUT(I) = (NLODW(I) * (UDFLUX(I-1)/10.) + (NLODW(I) * & (WLFL(I+1)/10.)}} \\
\quad \text{END IF} \\
\quad I = I+1 \\
\text{END DO}
\end{verbatim}
*

Changes in state variables or in nitrate concentrations as a transient phase are then calculated as a difference between nitrate coming in and nitrate going out of a particular compartment. The nitrate application, if any, on that day is also read from the input file and added to the top compartment. Finally, the total amount of nitrate drained out of the profile is calculated as the nitrate going out of the last compartment (NDRAIN). This is also expressed in kg ha⁻¹ (NDRAIKG).

\[
\text{GNAPP = LINT(NAPPTB, INAPP, DOY)} \\
\text{NCONAP = GNAPP/((TKL(I)/10.) * 1.4)} \\
\quad I = 1 \\
\quad \text{DO WHILE (I.LE.NL)} \\
\quad \quad \text{IF (I.EQ.1) THEN} \\
\quad \quad \quad \text{NCONCH(I) = (NIN(I) - NOUT(I)) / (TKL(I)/10.) + NCONAP} \\
\quad \quad \text{ELSE} \\
\quad \quad \quad \text{NCONCH(I) = (NIN(I) - NOUT(I)) / (TKL(I)/10.)}
\]

7
Integration. Total nitrate concentration is integrated with the change in total nitrate concentration for each soil compartment. Then the nitrate load in the soil solution is obtained by establishing equilibrium between the solid and liquid phases. Afterwards, the new nitrate concentrations in the liquid and solid phases are calculated. The nitrate adsorbed in the solids and in the solution is calculated in kg layer⁻¹.

*--- Nitrate equilibrium-------------------------

I = 1
DO WHILE (I.LT.NL)
 NCONT(I) = INTCRL(NCONT(I),NCONCH(I),DELT)
 NCONT(I) = MAX(0.,NCONT(I))
 I = I+1
END DO

I = 1
DO WHILE (I.LE.NL)

 NLODW(I) = (NCONT(I)-(PARA(I)*BDSOIL(I)))/(WCL(I)+(PARA(I)*BDSOIL(I)))
 IF (NLODW(I).LT.SET(I)) THEN
 NLODW(I) = NLODW(I)
 ELSE
 NLODW(I) = (NCONT(I)-(PARA(I)*BDSOIL(I)))/(WCL(I)+(PARA(I)*BDSOIL(I)))
 END IF

 NCONW(I) = NLODW(I)*WCL(I)
 NCONS(I) = NCONT(I)-NCONW(I)
 IF (NCONS(I).LE.TINY) THEN
 NCONS(I) = 0.0
 ELSE
 NCONS(I) = NCONS(I)
 END IF

 NLODS(I) = NCONS(I)/BDSOIL(I)
 I = I+1
END DO
\[I = 1 \]
\[\text{DO WHILE (I.LE.NL)} \]
\[\text{NTOTW(I) = (NCONW(I) \times (TEL(I)/10.1)} \times 1.4) \]
\[\text{NTOTS(I) = (NCONS(I) \times (TEK(I)/10.1)} \times 1.4) \]
\[\text{NTOT(I) = NTOTW(I) + NTOTS(I)} \]
\[I = I+1 \]
\[\text{END DO} \]

Appendix 1 gives the source code of the model.

Model parameterization

Hydraulic conductivity and moisture characteristics
The measured water retention data from field samples were parameterized using van Genuchten equations (van Genuchten 1980):
\[S = (\theta - \theta_r) / (\theta_s - \theta_r) = (1 + \theta h I)^{-m} \]
and
\[k = k_s S^1 \left[1 - (1 - S^{1/m})^m \right] ^2 \]
where \(m = 1 - 1/n \), \(\theta_r \) and \(\theta_s \) are residual and saturated volumetric water contents, \(k_s \) is the saturated hydraulic conductivity, and \(S \) refers to the degree of saturation.

The parameters \(\alpha \), \(n \), and \(I \) were optimized using the RECT program (van Genuchten et al 1991).

Bare soil evaporation
In some modeling approaches, actual evaporation from the bare soil is calculated by assuming that cumulative evaporation is proportional to the square root of time (Wopereis et al 1996, Penning de Vries et al 1989). In general, this approach works well for obtaining gross approximations in a simplified way. However, when tested with actual field bare soil evaporation data, it underestimated actual evaporation; therefore, we used a different approach. Partitioning of water loss into bare soil evaporation and water extraction by roots in the surface layer is very important in rainfed systems. To improve understanding of the dynamics of water capture by roots with increasing soil water potential, we need a reliable estimation of bare soil evaporation dynamics from the exposed soil surface between rows of the crop canopy. This will make it easier to estimate water capture by roots in field experiments.

Evaporation from the bare soil is driven by the radiation load and the drying power of the air. Potential evaporation rates can be estimated using Penman’s approach. Evaporation from the soil surface can occur at potential rates only when soil water is not a limiting factor or soil water content is at near saturation. When the soil water content falls below this level, the evaporation rate will be governed mainly by the decreasing soil water content in the surface layer.

Experiments with undisturbed core samples collected from the field (12 cm height and 10 cm diameter) from three sites in the Philippines (Matalom, Siniloan, and IRRI upland farm) were thoroughly saturated and kept in IRRI’s phytotron facility under constant conditions of evaporativity (30 °C, 1,200 µEinstein radiation, and relative humidity 70%). Water loss through surface evaporation was monitored regularly by carefully weighing the samples twice a day till evaporation loss became negligible and the soil became sufficiently dry. Finally, cores were put in an oven at 105 °C for 48 h, after which the final weights were determined. Throughout the experiment, a similar container with normal water was also placed in the phytotron and water loss was monitored. The water loss from the open water surface was considered as the potential evaporation loss at that evaporative demand of the atmosphere. A relationship between the ratio of actual evaporation (AE) and potential evaporation (PE) and relative water content was developed (Fig. 4).

Relative water content (RWC) is defined as follows:
\[\text{RWC} = (\theta - \theta_{AD})/(\theta_{ST} - \theta_{AD}) \]
where \(\theta \) is the actual soil volumetric moisture content (cm³ cm⁻³), \(\theta_{AD} \) is the volumetric moisture content at air dryness (cm³ cm⁻³), and \(\theta_{ST} \) is the volumetric moisture content at saturation (cm³ cm⁻³).
Fig. 4. Reduction of actual bare soil evaporation based on the relationship of the ratio between actual to potential evaporation and relative water content.

The amount of water loss through evaporation from the soil surface can be expressed as a fraction of the potential soil evaporation:

$$E_a = E_p \times RF$$

where $E_a =$ actual evaporation (mm d$^{-1}$), $E_p =$ potential evaporation rate (mm d$^{-1}$), and $RF =$ reduction factor for the influence of soil moisture content on evaporation rate from the soil surface (dimensionless factor).

Model validation

The current version of the model was tested using data from a field experiment conducted on the IRRI upland farm in the 1997 dry season. Measurements of volumetric water contents in a bare plot during a drying cycle were used. Saturated hydraulic conductivity and unsaturated hydraulic conductivity were measured on undisturbed cores collected from the field at various depths. Saturated hydraulic conductivity was measured by the constant head method (Wopereis et al. 1993), while unsaturated hydraulic conductivity was measured by the wind method (Wopereis et al. 1993). A soil moisture characteristic curve was constructed using undisturbed cores from the field and a pressure plate apparatus. Later, the data were parameterized using the van Genuchten equation (van Genuchten 1980). All these were used as input parameters along with actual weather data. The model was run for the period of experimentation. Results (Fig. 5) show that the model could simulate actual soil evaporation satisfactorily.

Input and output files

All the input data required for the model are given in one file. Appendix 2 contains a sample file. Appendix 3 gives a sample file that provides the appropriate selection and path of weather data and the start and finish times of the simulations.

A control file is required for the input and output control of the simulation runs. Appendix 4 shows a sample file. In this file, FILE11 to FILE14 are specified; the names of input data files, for example, soil.dat, need to be specified. Similarly, FILEIT is for the timer file name, FILEIR is for the specification of the reruns file, FILEON is for the specification of the name of the output file in which results will be stored, and FILEOL is for the specification of the log file.

The FSE system provides the facility of having more simulation runs with a single execution command. In the reruns file, the input variables and/or parameters or start and finish times or a combination of any of them with which we need to rerun the simulations can be specified. If we need several reruns, then we can specify each set one below the other. However, the order and number of variables in all the specified reruns should be the same. Appendix 5 shows an example of a reruns file.

An output file created by the FSE system, whose name can be defined in the control.dat file, will contain values of selected variables at desired time steps as indicated by the PRDEL option in the timer file.

Sample soil, timer, and control files are presented as Appendices 2-4.
Listing

Some of the variables in UPLAND, which are similar to those in PADDY, are not listed here.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDFLUX, DFLUX</td>
<td>Upward, Downward flux</td>
<td>(mm)</td>
</tr>
<tr>
<td>NL</td>
<td>Number of layers</td>
<td>(-)</td>
</tr>
<tr>
<td>TKL</td>
<td>Thickness of layers</td>
<td>m</td>
</tr>
<tr>
<td>WCLI</td>
<td>Initial volumetric moisture content (layerwise)</td>
<td>m³ m⁻³</td>
</tr>
<tr>
<td>RIRRIT</td>
<td>Irrigation table</td>
<td>mm d⁻¹</td>
</tr>
<tr>
<td>SWITIR</td>
<td>Irrigation switch</td>
<td>(-)</td>
</tr>
<tr>
<td>SWITFD</td>
<td>Free drainage/impeded drainage switch</td>
<td>(-)</td>
</tr>
<tr>
<td>KST</td>
<td>Saturated hydraulic conductivity</td>
<td>cm d⁻¹</td>
</tr>
<tr>
<td>VGA</td>
<td>van Genuchten alpha parameter</td>
<td>(-)</td>
</tr>
<tr>
<td>VGL</td>
<td>van Genuchten lambda parameter</td>
<td>(-)</td>
</tr>
<tr>
<td>VGN</td>
<td>van Genuchten n parameter</td>
<td>(-)</td>
</tr>
<tr>
<td>VGR</td>
<td>van Genuchten residual water conductivity</td>
<td>cm d⁻¹</td>
</tr>
</tbody>
</table>

For nitrate leaching (optional)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCONAP</td>
<td>Nitrate applied</td>
<td>kg ha⁻¹</td>
</tr>
<tr>
<td>NCONTI</td>
<td>Initial nitrate concentration</td>
<td>ml cm⁻³</td>
</tr>
<tr>
<td>BDSOIL</td>
<td>Bulk density of the soil (layerwise)</td>
<td>g cc⁻¹</td>
</tr>
<tr>
<td>PARAA</td>
<td>Parameter A for the nitrate equilibrium equation</td>
<td>(-)</td>
</tr>
<tr>
<td>PARAB</td>
<td>Parameter B for the nitrate equilibrium equation</td>
<td>(-)</td>
</tr>
<tr>
<td>PARAC</td>
<td>Parameter C for the nitrate equilibrium equation</td>
<td>(-)</td>
</tr>
<tr>
<td>PARAD</td>
<td>Parameter D for the nitrate equilibrium equation</td>
<td>(-)</td>
</tr>
<tr>
<td>SET</td>
<td>Breakaway point for choosing the right line</td>
<td>(-)</td>
</tr>
</tbody>
</table>

For the nitrate equilibrium equation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCONT</td>
<td>Total nitrate concentration</td>
<td>μmol cm⁻³</td>
</tr>
<tr>
<td>NCONW</td>
<td>Nitrate concentration in water</td>
<td>μmol cm⁻³</td>
</tr>
<tr>
<td>NCONS</td>
<td>Nitrate concentration in solids</td>
<td>μmol cm⁻³</td>
</tr>
<tr>
<td>NCONCH</td>
<td>Change in nitrate concentration</td>
<td>μmol cm⁻³</td>
</tr>
</tbody>
</table>

References

Appendix 1. Source code of UPLAND (v1.0).

UPLAND (v1.0)

A model for water balance and nitrate leaching for upland rice soils

programmed by
M.V.R. Murty and M. Kondo

February 2000

Version: FSE-2.1
Date: October 1994

Partly based on PADDY from
CRYZA_W: Rice growth model for irrigated and rainfed environments
M.C.S. Wopereis, B.A.M. Bouman, T.P. Tuong, H.F.M. ten Berge, and M.J. Kropf

International Rice Research Institute (IRRI), MCPO Box 3127,
Makati City 1271, Philippines

Department of Theoretical Production Ecology (TPE-WAU),
Wageningen Agricultural University, P.O. Box 430, 6700 AK Wageningen,
The Netherlands

Research Institute for Agrobiology and Soil Fertility (AB-DLO),
Agricultural Research Department, P.O. Box 14, 6700 AA Wageningen,
The Netherlands

This model is based on the following models:

PROGRAM MAIN
CALL FSE
END

SUBROUTINE MODELS
Authors: Daniel van Kraalingen
Date : 5 July 1995
Purpose: This subroutine is the interface routine between the FSE-driver and the simulation models. This routine is called by the FSE-driver at each new task at each time step. It can be used to specify calls to the different models that have to be simulated.

FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time)
name type meaning (unit) class
--- --- ---------------------- ----
ITASK I4 Task that subroutine should perform (-) I
IUNITD I4 Unit that can be used for input files (-) I
IUNITO I4 Unit number of output file (-) I

13
* IUNITL I4 Unit number for log file messages (-) I
* FILEIT C* Name of timer input file (-) I
* FILE1 C* Name of input file no. 1 (-) I
* FILE2 C* Name of input file no. 2 (-) I
* FILE3 C* Name of input file no. 3 (-) I
* FILE4 C* Name of input file no. 4 (-) I
* FILE5 C* Name of input file no. 5 (-) I
* OUTPUT L4 Flag to indicate if output should be done (-) I
* TERMNL L4 Flag to indicate if simulation is to stop (-) I/O
* DOY R4 Day number (January 1 = 1) (-) I
* IDOY I4 Day number within year of simulation (INTEGER) (d) I
* YEAR R4 Year of simulation (REAL) (y) I
* IYEAR I4 Year of simulation (INTEGER) (y) I
* TIME R4 Time of simulation (d) I
* STTIME R4 Start time of simulation (=day number) (d) I
* FINTIM R4 Finish time of simulation (=day number) (d) I
* DELT R4 Time step of integration (d) I
* LAT R4 Latitude of site (dec.degr.) I
* LONG R4 Longitude of site (dec.degr.) I
* ELEV R4 Elevation of site (m) I
* WSTAT C* Status code from weather system (-) I
* WTRTER L4 Flag whether weather can be used by model (-) O
* RDD R4 Daily shortwave radiation (J m-2 d-1) I
* TMN R4 Daily minimum temperature (degrees C) I
* TMX R4 Daily maximum temperature (degrees C) I
* VP R4 Early morning vapour pressure (kPa) I
* WN R4 Daily average windspeed (m s-1) I
* RAIN R4 Daily amount of rainfall (mm d-1) I

* Fatal error checks: none
* Warnings : none
* Subprograms called: models as specified by the user
* File usage : none

SUBROUTINE MODELS(ITASK, IUNITD, IUNITO, IUNITL, FILEIT, FILEI1, FILEI2,
& FILEI3, FILEI4, FILEI5, OUTPUT, TERMNL, DOY, IDOY,
& YEAR, IYEAR, TIME, STTIME, FINTIM, DELT, LAT, LONG,
& ELEV, WSTAT, WTRTER, RDD, TMN, TMX, VP, WN, RAIN)
IMPLICIT REAL(A-Z)

* Formal parameters
INTEGER ITASK, IUNITD, IUNITO, IUNITL, IDOY, IYEAR
CHARACTER FILEIT*(*), FILEI1*(*), FILEI2*(*), FILEI3*(*)
CHARACTER FILEI4*(*), FILEI5*(*)
LOGICAL OUTPUT, TERMNL, WTRTER
CHARACTER WSTAT*6
CHARACTER WUSED*6

* Local variables
INTEGER SWILP
* INTEGER SWITPF
INTEGER IDOYH, ISTAT2
INTEGER IMVAR

*—Standard local declarations
INTEGER INL, I
PARAMETER (INL=10)

*—Declarations for water-limited production
REAL WCWP(INL), WCFC(INL), WCST(INL)
REAL TRWL(INL)

INTEGER NL
SAVE

* code for the use of RDD, TMMN, TMMX, VP, WN, RAIN (in that order)
* a letter 'U' indicates that the variable is used in calculations
DATA WUSED/'UUUUUU'/

* Check weather data availability
IF (ITASK.EQ.1.OR.ITASK.EQ.2.OR.ITASK.EQ.4) THEN
 DO IWVAR = 1,6
 is there an error in the IWVAR-th weather variable?
 IF (WUSED(IWVAR: :IWVAR).EQ.'U'.AND.WSTAT(IWVAR:IWAR).EQ.'4')
 THEN
 WTRTER = .TRUE.
 TERMNL = .TRUE.
 RETURN
 END IF
 END DO
END IF

* Initialization section

*—Read values from TIMER file
CALL RDINIT(IUNITD,IUNITL,FILEIT)
CALL RDSINT('SWIWLP',SWIWLP)
CALL RDSREA('MULTIP',MULTIP)
CLOSE (IUNITD)

RAINN = 0.
END IF

*—To run soil water balance; to get rain of next day
IDOYH = MIN(IDOY+1,365)
CALL WEATHR(IDOYH,ISTAT2,RDDN,TMMNN,TMMXN,VPN,WNN,RAINN)

CALL UPLAND(ITASK,IUNITD,IUNITO,IUNITL,FILEI2,OUTPUT,TERMNL,
 & WSTAT,WTRTER,DOY,DELT,TIME,RAIN,EVSCS,EVSCWL,
 & INL,NL,WCWP,WCFC,WCST,WCL,LAT,RDD,TMMN,
 & TMMX,VP,WN,FILEIT,
 & WLO)

RETURN
END
SUBROUTINE UPLAND
Authors: M.V.R. Murty and M. Kondo
ORYZA-W: rice growth model for fully irrigated and water-limited conditions
M.C.S. Wopereis, B.A.M. Bouman, T.P. Tuong, H.F.M ten Berge, and M.J. Kropff

FORMAL PARAMETERS: (I=input, O=output, C=control, IN=init, T=time)
* name type meaning (unit) class
 ITASK I4 Task that subroutine should perform (-) C
 IUNITD I4 Unit that can be used for input files (-) C/IN
 IUNITO I4 Unit number of output file (-) C/IN
 IUNITL I4 Unit number for log file messages (-) C/IN
 FILEI2 C* Name of input file no. 2 (-) C/IN
 OUTPUT R4 Flag to indicate if output should be done (-) C/I
 TERMNL R4 Flag to indicate if simulation is to stop (-) C/I/O
 WSTAT C* Status code from weather system (-) C
 WTRTER L4 Flag whether weather can be used by model (-) C
 DOY R4 Day number (January 1 = 1) (-) I
 DELT R4 Time step of integration (d) T
 TIME R4 Time of simulation (d) T
 ITIM I4 Time of simulation (d) T
 RAIN R4 Daily amount of rainfall (mm d-1) I
 EVSC R4 Potential soil evaporation rate (mm d-1) I
 TRWL R4 Array of actual transpiration rate/layer (mm d-1) I
 INL ?? Number of soil compartments (-) I
 NL I4 Number of soil layers (-) I
 WCWP R4 Array of water content at wilting point/layer (cm3 cm-3) O
 WCFC R4 Array of water content field capacity/layer (cm3 cm-3) O
 WCST R4 Array of water content saturation/layer (cm3 cm-3) O
 WCL R4 Array of actual water content/layer (cm3 cm-3) O
 WLO R4 Amount of ponded water (mm) O

SUBROUTINE UPLAND (ITASK, IUNITD, IUNITO, IUNITL, FILEI2, OUTPUT, TERMNL,
& WSTAT, WTRTER, DOY, DELT, TIME, RAIN, EVSC, EVSCWL,
& INL, NL, WCWP, WCFC, WCST, WCL, LAT, RDD, TMMN,
& TMMX, VP, WN, FILEIT,
& WLO)

IMPLICIT REAL(A-Z)

— Formal parameters
INTEGER ITASK, IUNITD, IUNITO, IUNITL, INL, NL
LOGICAL OUTPUT, TERMNL, WTRTER
CHARACTER FILEI2*80, WSTAT*6
REAL DOY, DELT, TIME, RAIN, EVSC, TKLT, WLO, EVSCS, EVSCWL
REAL WCWP (INL), WCFC (INL), WCST (INL), WCL (INL)
REAL LINT
CHARACTER (*) FILEIT
REAL YEAR
REAL LAT, RDD, TMMN, TMMX, VP, WN

— Local variables

16
*— Water balance parameters
 INTEGER SWITIR,SWITKH
 INTEGER SWITFD
 INTEGER SWITCR
 INTEGER MNL
 PARAMETER (MNL=10)
 REAL WCLI(MNL),TKL(MNL),WLFL(MNL+1),TKLM(MNL)
 REAL WLAD(MNL),WLFC(MNL),WLST(MNL),WL(MNL),MS(MNL)
 REAL KMS(MNL),DFLUX(MNL)
 REAL CONDCA(MNL),DMS(MNL)
 REAL CONAU(MNL),UDMS(MNL),UDFLUX(MNL+1)
 REAL WLCH(MNL)
 REAL WLOFCU

*— N content—
 REAL NCONTI(MNL)
 REAL NOUT(MNL),NIN(MNL),NCONCH(MNL)
 REAL NLODS(MNL),NLODM(MNL),NCONW(MNL),NCONS(MNL),NCONT(MNL)
 REAL PARAA(MNL),PARAB(MNL),PARAC(MNL),PARAD(MNL),BDSOIL(MNL)
 REAL SET(MNL),NDRAIN(MNL),NRRAKG(MNL)
 REAL NTOT(MNL),NTOTW(MNL),NTOTS(MNL)
 REAL TRWL(MNL)

 AFGEN functions
 INTEGER IMRFDD,ILRFDD
 PARAMETER (IMRFDD=40)
 DIMENSION RFDDTB(IMRFDD)

*— For LAI reading
 INTEGER IMLAI,ILLAI
 PARAMETER (IMLAI=40)
 DIMENSION LAITB(IMLAI)

 LOGICAL FREEDR
 INTEGER I,IRIRR
 INTEGER INAPP
 REAL RIRRIT(300)
 REAL NAPPTB(100)

 COMMON /NUCHT/ VGN(10),VGA(10),VGR(10),VGL(10)
 COMMON /HYDCON/ KST(10),WCAD(10),WCSTRP(10)
 COMMON /POWER/ PN(10)
 COMMON /SWIT/ SWITKH
 REAL KSAT(10)

 SAVE

*— Standard local variables
 INTEGER ITOLD

 TINY = 1.0E-5
 DATA ITOLD/4/

* The task that the subroutine should do (ITASK) against the task
* that was done during the previous call (ITOLD) is checked. Only
* certain combinations are allowed. These are
*
* New task: Old task:
* initialization terminal
* integration rate calculation
* rate calculation initialization, integration
* terminal <any old task>
Note: there is one combination that is correct but will not cause calculations to be done, i.e., if integration is required immediately after initialization.

IF (ITASK.EQ.2) THEN
 IF (WSTAT(2:2).EQ.'4'.OR.WSTAT(3:3).EQ.'4'.OR.WSTAT(4:4).EQ.'4') THEN
 WTRTER = .TRUE.
 TERMNL = .TRUE.
 ITOLD = ITASK
 RETURN
 END IF
ENDIF

IF (ITASK.EQ.1) THEN
 * Initialization
 FREEDR = .FALSE.
 IR = 0.
 GNAPP = 0.
 NLODAP = 0.
 CALL RDINIT(IUNITD,IUNITL,FILEIT)
 CALL RDSREA('ANGA',ANGA)
 CALL RDSREA('ANGB',ANGB)
 CLOSE (IUNITD)
 *— Read input from soil data file
 CALL RDINIT(IUNITD,IUNITL,FILEI2)
 *— Free draining/impeded drainage switch
 CALL RDSINT('SWITFD',SWITFD)
 IF (SWITFD.EQ.1) THEN
 FREEDR = .TRUE.
 ELSE IF (SWITFD.EQ.0) THEN
 FREEDR = .FALSE.
 END IF
 IF ((SWITFD.NE.0).AND.(SWITFD.NE.1)) STOP 'PLEASE CHECK VALUE SWITFD IN SOIL DATA FILE'
 *— Irrigation switch
 CALL RDSINT('SWITIR',SWITIR)
 IF (SWITIR.NE.0.AND.SWITIR.NE.1.AND.SWITIR.NE.2) STOP 'PLEASE CHECK VALUE SWITIR IN SOIL DATA FILE'
 IF (SWITIR.EQ.1) CALL RDAREA('RIRRIT',RIRRIT,300,IRIRR)
 IF (SWITIR.EQ.2) CALL RDSREA('IRRI',IRRI)
 *— Reduction factor for evaporation
 CALL RDAREA('RFDDTB',RFDDTB,IMRFDD,ILRFDD)
 *— LAITB called, NAPP also called
 CALL RDAREA('LAITB',LAITB,IMLAI,ILLAI)
 CALL RDAREA('NAPPTB',NAPPTB,100,INAPP)
 CALL RDSINT('NL',NL)
 IF (NL.GT.INL) CALL ERROR('PADDY','too many layers')
 CALL RDFREA('TKL',TKL,MNL,NL)
 CALL RDFREA('WCLI',WCLI,MNL,NL)
 CALL RDFREA('NCONTI',NCONTI,MNL,NL)
 CALL RDFREA('BDSOIL',BDSOIL,MNL,NL)
CALL RDFREA('PARAA', PARAA, MNL, NL)
CALL RDFREA('PARAB', PARAB, MNL, NL)
CALL RDFREA('PARAC', PARAC, MNL, NL)
CALL RDFREA('PARAD', PARAD, MNL, NL)
CALL RDFREA('SET', SET, MNL, NL)
CALL RDFREA('TRWL', TRWL, MNL, NL)

*— pf defined in terms of van Genuchten parameters
CALL RDFREA('VGA', VGA, MNL, NL)
CALL RDFREA('VGL', VGL, MNL, NL)
CALL RDFREA('VGN', VGN, MNL, NL)
CALL RDFREA('VGR', VGR, MNL, NL)
CALL RDFREA('WCST', WCST, INL, NL)

*— Bund height
IF (.NOT.FREEDR) THEN
 CALL RDSREA('WLOMX', WLOMX)
ELSE
 WLOMX = 0.
END IF

*— Minimum ponded water depth if fully irrigated
IF (.NOT.FREEDR) THEN
 CALL RDSREA('WLOMIN', WLOMIN)
ELSE
 WLOMIN = 0.
END IF

*— Initial ponded water depth
IF (.NOT.FREEDR) THEN
 CALL RDSREA('WL0I', WL0I)
ELSE
 WL0I = 0.
END IF

*— Saturated hydraulic conductivity
*— kh switch
CALL RDSINT('SWITKH', SWITKH)
IF (SWITKH.NE.0.AND.SWITKH.NE.1.AND.SWITKH.NE.2)
& STOP 'PLEASE CHECK VALUE SWITKH IN SOIL DATA FILE'
IF (SWITKH.EQ.1) THEN

*— kh defined in terms of van Genuchten parameters
CALL RDFREA('KST', KST, 10, NL)
CALL RDFREA('VGA', VGA, 10, NL)
CALL RDFREA('VGL', VGL, 10, NL)
CALL RDFREA('VGN', VGN, 10, NL)
CALL RDFREA('VGR', VGR, 10, NL)
ELSE IF (SWITKH.EQ.2) THEN

*— kh defined in terms of power function
CALL RDFREA('KST', KST, 10, NL)
CALL RDFREA('PN', PN, 10, NL)
END IF

*— Reading of soil data completed
CLOSE (IUNITD)

I = 1
DO WHILE (I.LE.NL)
 IF (FREEDR) KST(I) = 1000.
 KST(I) = KST(I)
 WCSTRP(I) = WCST(I)
 I = I+1
END DO
I = 1
DO WHILE (I.LE.NL)
 CALL SUWCM2(I, 2, WCST(I), WCFC(I), 300.)
 CALL SUWCM2(I, 2, WCST(I), WCMP(I), 1.6E4)
 CALL SUWCM2(I, 2, WCST(I), WCAD(I), 1.0E7)
 I = I+1
END DO

I = 1
DO WHILE (I.LE.NL)
 IF (WCLI(I).LT.WCAD(I) .OR. WCLI(I).GT.WCST(I))
& CALL SUERR(3, WCLI(I), WCAD(I), WCST(I))
 I = I+1
END DO

TKLT = 0.

*--- Convert TKL from m into mm; calculate water contents in mm
I = 1
DO WHILE (I.LE.NL)
 TKLM(I) = 100*TKL(I)
 TKL(I) = 1000*TKL(I)
 WLFC(I) = WCFC(I)*TKL(I)
 WLAD(I) = WCAD(I)*TKL(I)
 WLST(I) = WCST(I)*TKL(I)
 WL(I) = WCLI(I)*TKL(I)
 I = I+1
END DO

*--- Initial (total) water content in soil profile (mm)
I = 1
DO WHILE (I.LE.NL)
 WCL(I) = WCLI(I)
 WCUMI = WCUMI+WL(I)
 I = I+1
END DO

WCUM = WCUMI

*--- Nitrate application---
GNAPP = LINT(NAPPPB, INAPP, DOY)
NCONAP = GNAPP/((TKL(I)/10.)*1.4)

I = 1
DO WHILE (I.LE.NL)
 IF (I.EQ.1) THEN
 NCONT(I) = NCONT(I)+NCONAP
 ELSE
 NCONT(I) = NCONT(I)
 END IF
 I = I+1
END DO

I = 1
DO WHILE (I.LE.NL)
 NLODW(I) = (NCONT(I)-(PARAB(I)*BDSOIL(I)))/(WCL(I)+(PARAA(I)
& *BDSOIL(I)))
 IF (NLODW(I).LT.SET(I)) THEN

 END IF

20
NLODW(I) = NLODW(I)
ELSE
NLODW(I) = (NCONT(I) - (PARAD(I)*BDSOIL(I))) / (WCL(I) + (PARAC(I) * BDSOIL(I)))
END IF
NCONW(I) = NLODW(I)*WCL(I)
NCONS(I) = NCONT(I) - NCONW(I)
IF (NCONS(I) .LE. TINY) THEN
 NCONS(I) = 0.0
ELSE
 NCONS(I) = NCONS(I)
END IF
NLODS(I) = NCONS(I) / BDSOIL(I)
I = I + 1
END DO

I = 1
DO WHILE (I .LE. NL)
 NTOTW(I) = (NCONW(I) * (TKL(I) / 10.) * 1.4)
 NTOTS(I) = (NCONS(I) * (TKL(I) / 10.) * 1.4)
 NTOT(I) = NTOTW(I) + NTOTS(I)
 I = I + 1
END DO

*—— Depth of top of compartments
*—— Initialization of state variables
*—— Initial ponded water depth (mm)
 WLO = WLOI

*—— Reset days since last ponded water
 DSPW = 1.

*—— Reset cumulative amounts
 DRAICU = 0.
 UPRICU = 0.
 GWCU = 0.
 EVSWMCO = 0.
 RAICU = 0.
 RNOFCU = 0.
 TRWCU = 0.
 WCUMCO = 0.
 WLOCO = 0.
 WLOFCU = 0.
 NDRACU = 0.
ELSE IF (ITASK .EQ. 2) THEN
 WLOCH = 0.
 WCMCH = 0.
 RUNOF = 0.
 FVSW = 0.
 EVSW = 0.
 IR = 0.
 DRAIN = 0.
 GNAPP = 0.
 NCONAP = 0.
 ECSCS = 0.
 EVSCWL = 0.
*— Reset rates to 0

\[I = 1 \]

DO WHILE (I.LE.NL)
 WLFL(I) = 0.
 WLCH(I) = 0.
 MS(I) = 0.
 KMS(I) = 0.
 CONDCA(I) = 0.
 DMS(I) = 0.
 DFLUX(I) = 0.
 CONAU(I) = 0.
 UDMS(I) = 0.
 UDFLUX(I) = 0.
 NOUT(I) = 0.
 NIN(I) = 0.
 NCONCH(I) = 0.
 I = I+1
END DO

WLFL(I) = 0.
UDFLUX(I) = 0.

*— Transpiration summed over all layers (mm/d)

\[TRW = 0 \]

\[I = 1 \]

DO WHILE (I.LE.NL)
 TRW = TRW+TRWL(I)
 I = I+1
END DO

*— If irrigated, supply constant irrigation (mm/d) if ponded water

*— Level is below minimum

IF (SWITIR.EQ.1) IR = LINT(RIRRIT,IRIRR,DOY)

IF (WLO.LE.WLOMIN.AND.SWITIR.EQ.2) IR = IRRI

IF (SWITIR.EQ.0) IR = 0.

IF (SWITKH.NE.0) THEN
 I = 1
 DO WHILE (I.LE.NL)
 CALL SUWCMS2(I,1,WCLST(I),WCL(I),MS(I))
 CALL SUMSKM2(I,MS(I),WCLST(I),KMS(I))
 I = I+1
 END DO
END IF

I = 1
DO WHILE (I.LE.(NL-1))

 DMS(I) = (MS(I+1)-MS(I))
 CONDCA(I) = (SQRRT(KMS(I)*KMS(I+1)))
 DFLUX(I) = (CONDCA(I)*((DMS(I)+TKLM(I))/TKLM(I)))*10.

IF (((DFLUX(I).GE.0.) .AND. (MS(I).LE.300.)) .AND. ((DFLUX(I).GE.0.) .AND. (MS(I).LE.300.)) .AND. (MS(I).LE.300.)) THEN
 DFLUX(I) = MIN(10.*KSAT(I),MIN(WLST(I+1)-WL(I+1)),
 (WLST(I+1)-WL(I+1))/DELT))
ELSIF ((DFLUX(I).GE.0.) .AND. (MS(I).GT.300.)) THEN
 DFLUX(I) = MIN(DFLUX(I), (WLST(I+1)-WL(I+1))/DELT)
ELSE
 DFLUX(I) = 0.
END IF

 UDFLUX(I) = (CONDCA(I)*((DMS(I)+TKLM(I))/TKLM(I)))**10.

IF (UDFLUX(I).LT.0.0) THEN
 UDFLUX(I) = ABS(UDFLUX(I))
ELSE
 UDFLUX(I) = 0.
END IF

IF (MS(I).GE.300.) THEN
 UDFLUX(I) = MIN(ABS(UDFLUX(I)),MAX(0.0,(WLFC(I)-WL(I))/DELT))
ELSE
 UDFLUX(I) = 0.
END IF

I = I+1
END DO

IF (I.EQ.NL) THEN
 DFLUX(I) = MIN(10.*KSAT(I),MAX(0.0,(WL(I)-WLFC(I))/DELT))
 UDFLUX(I) = 0.0
END IF

RDAS = 1.
DTR = RDD

**Average temperature
TAV = (TMIN+TMAX)/2.
LAI = LINT(LAITB,ILLAI,DOY)

CALL ASTRO(DOY,LAT,SC,DSO,SINLD,COSLD,DAYL,DSINB,DSINBE)

CALL ETPOT(ANGA,ANGB,DTX,DSO,TAV,VP,WN,LAI,
&
 WCL,WCST,EVSCS,EVSCWL)

** Ponded water on field
IF (WL0.GE.TINY) THEN

** Reset number of days after ponded water
 DSPW = 1.

** Ponded water can sustain evaporation and transpiration
IF (WL0/DELT+RAIN*IR.GE.EVSCWL+TRW) THEN

** Calculate change in ponded water depth (mm/d)
 WL0CH = RAIN+IR-EVSCWL-TRW

** Reset transpiration losses per soil compartment to zero
** as transpiration is taken from ponded water
 I = 1
 DO WHILE (I.LE.NL)
 TRWL(I) = 0
 I = I+1
 END DO

** For water balance check
 EVSW = EVSCWL
 EVSWS = 0.

** Calculate flow through boundaries of soil compartments
 WLFL(1) = RAIN+IR-WL0-EVSW
 WL0CH = RAIN+IR-WLFL(1)-EVSW
I = 1
DO WHILE (I.LE.(NL+1))
 UDFLUX(I) = 0.
 I = I+1
END DO

I = 1
DO WHILE (I.LE.NL)
 CALL DNFL (I,0,KSAT(I),WLFL(I),TRWL(I),EVWS,VL(WL(I),
 DFLUX(I),WLFC(I),DELT,WLFL(I+1))
 I = I+1
END DO

IF (.NOT.FREEDR) THEN
 I = NL
 DO WHILE (I.GE.1)
 CALL BACKFL(I,NL,0,VL(I),WLFL(I),WLFL(I+1),UDFLUX(I),
 EVWS,TRWL(I),VLST(I),DELT,FLNEW,REST)
 WLFL(I) = FLNEW
 I = I-1
 WLCH = WLCH+(MAX(0.,(REST-WLST(I))/DELT))
 IF (WL0+WLCH*DELT.WL0MX) THEN
 RUNOF = (WL0+WLCH*DELT-WL0MX)/DELT
 WLCH = WLCH-RUNOF
 END IF
 END DO

*—Nitrate fluxes
I = 1
DO WHILE (I.LE.NL)
 IF (I.EQ.1) THEN
 NIN(I) = NLODW(I+1)* (UDFLUX(I)/10.)
 NOUT(I) = NLODW(I) * (WLFL(I+1)/10.)
 ELSE IF (I.EQ.NL) THEN
 NIN(I) = (NLODW(I-1) * (WLFL(I)/10.))
 NOUT(I) = (NLODW(I) * (WLFL(I+1)/10.))
 ELSE
 NIN(I) = (NLODW(I+1) * (UDFLUX(I)/10.) + (NLODW(I-1)*
 (WLFL(I)/10.))
 NOUT(I) = (NLODW(I) * (UDFLUX(I-1)/10.) + (NLODW(I)*
 (WLFL(I+1)/10.))
 END IF
 I = I+1
END DO

*—Ponded water can sustain part of evaporation only
ELSE IF (WLO/DELT+RAIN+IR.LT.EVSCWL) THEN

*—Calculate change in ponded water depth (mm/d)
WLOCH = -WLO/DELT
WLFL(I) = RAIN+IR
I = 2
DO WHILE (I.LE.NL+1)
 WLFL(I) = 0.
 I = I+1
END DO
*----- Calculate contribution of first soil compartment to evaporation
*-----

\[EVSW = \min (EVSCW, WL(1)/DELT - WLAD(1)/DELT + RAIN + IR) \]

\[EVSWS = EVSW \]

*----- For water balance check

\[EVSW = WL/D + EVSWS \]

\[I = 1 \]

DO WHILE (I <= (NL+1))

UDFLUX(I) = 0.

I = I+1

END DO

*-- Nitrate fluxes

\[I = 1 \]

DO WHILE (I <= NL)

IF (I.EQ.1) THEN

\[NIN(I) = NLODW(I+1)*(UDFLUX(I)/10.) \]

\[NOUT(I) = NLODW(I)*(WLFL(I+1)/10.) \]

ELSE IF (I.EQ.NL) THEN

\[NIN(I) = (NLODW(I-1)*(WLFL(I)/10.)) \]

\[NOUT(I) = (NLODW(I)*(WLFL(I+1)/10.)) \]

ELSE

\[NIN(I) = (NLODW(I+1)*(UDFLUX(I)/10.)) + (NLODW(I-1)*WLFL(I)) \]

&

\[NOUT(I) = (NLODW(I)*(UDFLUX(I-1)/10.)) + (NLODW(I)*WLFL(I+1)) \]

END IF

I = I+1

END DO

END IF

ELSE

*----- No ponded water on surface

*----- Calculate evaporation rate from soil surface (mm/d)

\[ZDD = (WCL_1 - WCAD_1)/(WCST_1 - WCAD_1) \]

\[RFDD = \text{LINT}(RFDDTB, ILRFDD, ZDD) \]

\[LA1 = \text{LINT}(LAITB, IL1AI, DOY) \]

\[EVSW = EVSCS*RFDD \]

\[EVSWS = EVSW \]

DSPW = DSPW+1.

\[WLFL(I) = \min (RAIN+IR, (WLST(I) - WL(I) + EVSWS)) \]

\[I = 1 \]

DO WHILE (I <= NL)

CALL DNFL(I, 1, KSAT(I), WLFL(I), TRWL(I), EVSWS, WL(I),

&

DFLUX(I), WLFC(I), DELT, WLFL(I+1))

I = I+1

END DO
IF (.NOT.FREEDR) THEN
 I = NL
 DO WHILE (I.GE.1)
 CALL BACKFL(I,NL,1,WL(I),WLFL(I),WLFL(I+1),UDFLUX(I+1),
 EVSWS,TRWL(I),WLST(I),DELT,FLNEW,REST)
 WLFL(I) = FLNEW
 I = I-1
 END DO
 WLOCH = RAIN+IR-WLFL(I)
 IF (WLO+WLOCH*DELT.GE.WLOMX) THEN
 RUNOF = (WLO+WLOCH*DELT-WLOMX)/DELT
 WLOCH = WLOCH-RUNOF
 END IF
END IF

---Nitrate fluxes---
I = 1
DO WHILE (I.LE.NL)
 IF (I.EQ.1) THEN
 NIN(I) = NLODW(I+1)*UDFLUX(I)/10.
 NOUT(I) = NLODW(I)*WLFL(I+1)/10.
 ELSE IF (I.NE.NL) THEN
 NIN(I) = (NLODW(I-1)*WLFL(I)/10.)
 NOUT(I) = (NLODW(I)*WLFL(I+1)/10.)
 ELSE
 NIN(I) = (NLODW(I+1)*UDFLUX(I)/10.)*(WLFL(I)/10.)
 NOUT(I) = (NLODW(I)*UDFLUX(I-1)/10.)*(WLFL(I+1)/10.)
 END IF
 I = I+1
END DO

I = 1
DO WHILE (I.LE.NL)
 IF (I.EQ.1) THEN
 WLCH(I) = WLFL(I)-WLFL(I+1)-TRWL(I)-EVSWS+UDFLUX(I)
 ELSE
 WLCH(I) = WLFL(I)-WLFL(I+1)-TRWL(I)+UDFLUX(I-1)-UDFLUX(I)
 END IF
 WCUMCH = WCUMCH+WLCH(I)
 I = I+1
END DO

--Nitrate application content--
GNAPP = LINT(NAPPTB,INAPP,DOY)
NCONAP = GNAPP/((TKL(I)/10.)*1.4)
I = 1
DO WHILE (I.LE.NL)
 IF (I.EQ.1) THEN
 NCONCH(I) = (NIN(I)-NOUT(I))/(TKL(I)/10.)+NCONAP
 ELSE
 NCONCH(I) = (NIN(I)-NOUT(I))/(TKL(I)/10.)
 END IF
 I = I+1
END DO
*-- Estimation of NDRAIN in kg/ha
I = NL
DO WHILE (I.EQ.NL)
 NDRAIN(I) = NOUT(I)/(TKL(I)/10.)
 NDRAKG(I) = NDRAIN(I)*(TKL(I)/10.)*1.4
 I = I+1
END DO

IF (OUTPUT) THEN
 CALL OUTARR('WLCH',WLCH,1,5)
 CALL OUTDAT(2,0,'WLO',WLO)
 CALL OUTDAT(2,0,'RAIN',RAIN)
 CALL OUTARR('TRWL',TRWL,1,6)
 CALL OUTARR('WCL',WCL,1,5)
 CALL OUTARR('WFLO',WFLO,1,6)
 CALL OUTARR('DFLUX',DFLUX,1,10)
 CALL OUTARR('MS',MS,1,5)
 CALL OUTARR('WL',WL,1,5)
 CALL OUTARR('KMS',KMS,1,5)
 CALL OUTARR('UDFLUX',UDFLUX,1,5)
 CALL OUTARR('NLODT',NLODT,1,NL)
 CALL OUTARR('NLODS',NLODS,1,NL)
 CALL OUTARR('NLODW',NLODW,1,NL)
 CALL OUTARR('NCONS',NCONS,1,NL)
 CALL OUTARR('NCONW',NCONW,1,NL)
 CALL OUTARR('NCONT',NCONT,1,NL)
 CALL OUTARR('NIN',NIN,1,NL)
 CALL OUTARR('NOUT',NOUT,1,NL)
 CALL OUTDAT(2,0,'ZW',ZW)
 CALL OUTDAT(2,0,'EVSC',EVSC)
 CALL OUTDAT(2,0,'NCONAP',NCONAP)
 CALL OUTDAT(2,0,'EVSW',EVSW)
 CALL OUTDAT(2,0,'EVSW',EVSW)
 CALL OUTDAT(2,0,'EVSW',EVSW)
 CALL OUTDAT(2,0,'DRAINU',DRAINU)
 CALL OUTDAT(2,0,'UPRICU',UPRICU)
 CALL OUTDAT(2,0,'EVSWCU',EVSWCU)
 CALL OUTDAT(2,0,'RAINCU',RAINCU)
 CALL OUTDAT(2,0,'RNOFCU',RNOFCU)
 CALL OUTDAT(2,0,'TRWCU',TRWCU)
 CALL OUTDAT(2,0,'WCMCO',WCMCO)
 CALL OUTDAT(2,0,'WLCO',WLCO)
 CALL OUTDAT(2,0,'NDRACU',NDRACU)
END IF

ELSE IF (ITASK.EQ.3) THEN

*-- Integration of state variables
WLO = INTGRL(WL0, WL0CH, DELT)
I = 1
DO WHILE (I.LE.NL)
 WL(I) = INTGRL(WL(I), WLCH(I), DELT)
 I = I+1
END DO
I = 1
DO WHILE (I.LE.NL)
 WCL(I) = WL(I)/TKL(I)
 I = I+1
END DO

I = 1
DO WHILE (I.LE.NL)
 NCONT(I) = INTGR(NCONT(I),NCONCH(I),DELT)
 NCONT(I) = MAX(0.,NCONT(I))
 I = I+1
END DO

I = 1
DO WHILE (I.LE.NL)
 NLODW(I) = (NCONT(I)-(PARAB(I)*BDSOIL(I)))/(WCL(I)+(PARAA(I)*BDSOIL(I)))
 IF (NLODW(I).LT.SET(I)) THEN
 NLODW(I) = NLODW(I)
 ELSE
 NLODW(I) = (NCONT(I)-(PARAD(I)*BDSOIL(I)))/(WCL(I)+(PARAC(I)*BDSOIL(I)))
 END IF
 NCONW(I) = NLODW(I)*WCL(I)
 NCONS(I) = NCONT(I)-NCONW(I)
 IF (NCONS(I).LE.TINY) THEN
 NCONS(I) = 0.0
 ELSE
 NCONS(I) = NCONS(I)
 END IF
 NLODS(I) = NCONS(I)/BDSOIL(I)
 I = I+1
END DO

I = 1
DO WHILE (I.LE.NL)
 NTOWT(I) = (NCONW(I)*(TKL(I)/10.)*1.4)
 NTOTS(I) = (NCONS(I)*(TKL(I)/10.)*1.4)
 NTOT(I) = NTOWT(I)+NTOTS(I)
 I = I+1
END DO
*--- Cumulative amounts
 DRAICU = DRAICU-WLFL(NL+1)*DELT
 EVSWCU = EVSWCU-EVSW*DELT
 RAINCU = RAINCU+(RAIN+IR)*DELT
 RNOFCU = RNOFCU-RNOF*DELT
 TRWCU = TRWCU-TRW*DELT
 NDRACU = NDRACU-NDRAKG(NL)*DELT

*--- Water balance check
 WCUM = WCUM+WCUMCH*DELT

*--- Contribution of profile to water balance, since start
 PROREL = WCUMCH
 WCUMCO = WCUMCO+PROREL*DELT
*— Contribution of surface water to water balance, since start
SURREL = WLOCH
WLOCO = WLOCO+SURREL*DELT

*— Total change in system water content
CKWIN = WCUMCO+WLOCO

*— Total of external contributions to system water content
CKWFL = RAINCU+RNFOCU+EVSWCU+TRWCU+DRAICU+UPRICU

* — Check this
CALL SWCHK(CKWFL,CKWIN,TIME)

ELSE IF (ITASK.EQ.4) THEN
END IF
ITOLD = ITASK
RETURN
END

SUBROUTINE SUMSKM2

Purpose: SUMSKM2 calculates the hydraulic conductivity at
given suction for compartment I on the basis of chosen
option

FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time)

name type meaning (unit) class
I I4 Compartment index (-) I
MS R4 Soil water suction (cm) I
WCST R4 Array of water content saturation/layer (cm3 cm-3) 0
KMS R4 Hydraulic conductivity (cm d-1) 0

SUBROUTINES called :
- SUERR, SWCMS2

FUNCTIONS called : none

FILE usage : none

SUBROUTINE SUMSKM2(I,MS,WCST,KMS)

IMPLICIT REAL(A-Z)
INTEGER I

*— Common blocks
INTEGER SWITKH
COMMON /NUCHT/ VGN(10),VGA(10),VGR(10),VGL(10)
COMMON /HYDCON/ KST(10),WCAD(10),WCSX(10)
COMMON /POWER/ PN(10)
COMMON /SWIT/ SWITKH
*— Variables retain their values between subsequent calls
of this subroutine
SAVE

DATA TINY/1.E-10/
DATA MSAD/1.E7/
Check input value MS

IF (MS.LT.-TINY.OR.MS.GT.E8) CALL SUERR(I,MS,0.,1.E8)

IF (MS.GE.MSAD-TINY) THEN
 Air dry
 KMS = 0.
ELSE
 Calculate conductivity
 IF (SWITCH.EQ.1) THEN
 van Genuchten conductivity
 WCL = 0.
 dummy value; wcl is returned by suwcms2!
 CALL SUWCMS2(I,2,WCST,WCL,MS)
 VGM = 1.0-1.0/VGN(I)
 WREL = (WCL-VGR(I))/(WCSTRP(I)-VGR(I))
 HLP1 = WREL**VGL(I)
 HLP2 = 1.0-WREL**(-1./VGM)
 HLP3 = 1.0-HLP2**VGM
 KMS = KST(I)*HLP1*HLP3*HLP3
 ELSE IF (SWITCH.EQ.2) THEN
 Power function conductivity
 IF (MS.LE.1.) KMS = KST(I)
 IF (MS.GT.1.) KMS = KST(I)*(MS**PN(I))
 ELSE IF (SWITCH.EQ.5) THEN
 User can here specify preferred conductivity function
 The following two lines should be removed:
 WRITE (*,10)
 STOP
 END IF
 IF (KMS.LT.TINY) KMS = 0.
END IF
10 FORMAT ('*** fatal error; option SWIT3=5 requires ',/,' specification of conductivity function')
RETURN
END

SUBROUTINE SUWCMS2

Purpose: SUWCMS2 calculates volumetric soil water content from
soil water suction, and vice versa. Various options are offered. See SWIT8 in input file or SAWAH manual.

FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time)

<table>
<thead>
<tr>
<th>name</th>
<th>type</th>
<th>meaning (unit)</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I4</td>
<td>Compartment index (-)</td>
<td>I</td>
</tr>
<tr>
<td>SWIT4</td>
<td>I4</td>
<td>Switch to set request MS(WCL) or WCL(MS) (-)</td>
<td>I</td>
</tr>
<tr>
<td>WCST</td>
<td>R4</td>
<td>Array of water content saturation / layer (cm3 cm-3)</td>
<td>I</td>
</tr>
<tr>
<td>WCL</td>
<td>R4</td>
<td>Array of actual water content / layer (cm2 cm-3)</td>
<td>I/O</td>
</tr>
<tr>
<td>MS</td>
<td>R4</td>
<td>Soil water suction (cm)</td>
<td>I/O</td>
</tr>
</tbody>
</table>

SUBROUTINES called:
- SUERR

FUNCTION called:
- none
SUBROUTINE SWCMS2(I,SWIT4,WGST1,WCL,MS)

IMPLICIT REAL(A-Z)
INTEGER I,SWIT4

*-- Common blocks
COMMON /NUCHT/ VGN(10),VGA(10),VGR(10),VGL(10)
COMMON /HYDCON/ KST(10),WCAD(10),WCSTRP(10)
*-- Variables retain their values between subsequent calls
* of this subroutine
SAVE

DATA TINY/0.001/

IF (SWIT4.EQ.1) THEN
 * Suction calculated from water content
 IF (WCL.LT.WCAD(I))
 CALL SUERR(3,WCL,WCAD(I),WGST1)
 IF (WCL.GT.WCSTRP(I).OR.(WCL.GT.WCST)) THEN
 It is assumed that MS remains zero during shrinkage
 MS = 0.
 ELSE
 van Genuchten option
 HLP1 = AMAX1(WCAD(I),WCL)
 WREL = (WCL-VGR(I))/(WCSTRP(I)-VGR(I))
 VGM = 1.-1./VGN(I)
 HLP2 = 1./VGA(I)
 HLP3 = -1./VGM
 HLP4 = 1./VGN(I)
 MS = HLP2*(WREL**HLP3-1.)*HLP4
 END IF
ELSE IF (SWIT4.EQ.2) THEN
 * Water content calculated from suction
 IF (MS.LT.-TINY.OR.MS.GT.1.EE) CALL SUERR(4,MS,0.,1.E8)
 van Genuchten option
 VGM = 1.-1./VGN(I)
 HLP1 = (MS*VGA(I))**VGN(I)
 WREL = (1.+HLP1)**(-VGM)
 WCL = WREL*(WCSTRP(I)-VGR(I))+VGR(I)
END IF

RETURN
END

SUBROUTINE SUERR

Purpose: SUERR checks whether value of variable X is within
prespecified domain

* FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time)
* name type meaning (unit) class *
* --- ------- ---------- ------- *
* IMNR I4 Message number I *
* X R4 Value of variable to be checked (variable) I *
* XMIN R4 Minimum allowable value of X (variable) I *
* XMAX R4 Maximum allowable value of X (variable) I *

* WARNINGS: *
* *
* X < XMIN * 0.99 and XMIN .NE. -99 then expert message is produced *
* X > XMAX * 1.01 and XMAX .NE. -99 then expert message is produced *
*
* SUBROUTINES called : none *
* *
* FUNCTIONS called : *
* *
* FILE usage : none *
*
SUBROUTINE SUERR(IMNR,X,XMIN,XMAX)
*
*(JJ) IUNLOG is an obsolete variable: it is NEVER assigned a value, but
* still it is 'used' in determining whether to write something to
* the log file it is supposed to be defined by.
* Note that this variable is used in various subroutines
* throughout WBAL8.
*
IMPLICIT REAL(A-Z)
INTEGER IUNLOG,IMNR
CHARACTER*1 DUMMY
CHARACTER*38 ERRM(5)

*— Common block
COMMON /UNITNR/ IUNLOG

*— Variables retain their values between subsequent calls
* of this subroutine
SAVE

DATA ERRM/ 'MATRIC SUCTION OUT OF RANGE IN SUMSKM2',
& 'WATER CNT OUT OF RANGE IN SUSLIN ',
& 'WATER CNT OUT OF RANGE IN SUWCSM2 ',
& 'MATRIC SUCTION OUT OF RANGE IN SUWCSM2',
& 'ONE OR MORE TRWL(I) OUT OF RANGE '/

IF ((X.LT.XMIN*0.99).AND.(XMIN.NE.-99.)) GOTO 10
IF ((X.GT.XMAX*1.01).AND.(XMAX.NE.-99.)) GOTO 10
RETURN

10 CONTINUE
WRITE (*,20) IMNR,X,XMIN,XMAX
WRITE (*,30) ERRM(IMNR)
IF (IUNLOG.GT.0) THEN
 WRITE (IUNLOG,20) IMNR,X,XMIN,XMAX
 WRITE (IUNLOG,30) ERRM(IMNR)
END IF
READ (*,'(A)') DUMMY
STOP

20 FORMAT (//'***fatal error in variable or parameter value *'*',/,
& 'message number, value, minimum and maximum: '//' ,10X,
& I2,3(3X,E10.3))
30 FORMAT (A)
END
* SUBROUTINE SUWCHK

Purpose: SUWCHK checks the soil water balance by comparing
time-integrated boundary fluxes versus change in
total amount of water contained in the system.

FORMAL PARAMETERS: (I=input, O=output, C=control, IN=init, T=time)

name type meaning (unit) class

** CKWFL R4 Sum of time-integrated boundary fluxes (mm) I *
** CKWIN R4 Change in water storage since start (mm) I *
** TIME R4 Time of simulation (d) I *

SUBROUTINES called : none

FUNCTIONS called : none

FILE usage :
- (screen), unit IUNLOG

SUBROUTINE SUWCHK(CKWFL, CKWIN, TIME)

IMPLICIT REAL(A-Z)
INTEGER IUNLOG

*-- Common
COMMON /UNITNR/ IUNLOG

*-- Variables retain their values between subsequent calls
of this subroutine
SAVE

FUWCHK = 2.0*(CKWIN-CKWFL)/(CKWIN+CKWFL+1.E-10)
XDIF = ABS(CKWIN-CKWFL)
IF (ABS(FUWCHK).GT.0.01 .AND. XDIF.GT.1.0) THEN
 Absolute error in water balance exceeds 1 mm
 and relative error exceeds 1%.
 WRITE (*,10) FUWCHK, CKWIN, CKWFL, TIME
 IF (IUNLOG.GT.0) WRITE (IUNLOG,10) FUWCHK, CKWIN, CKWFL, TIME
END IF
10 FORMAT (/** error in water balance, please check **/,
 'CKWFL=',F6.3,' CKWIN=',F8.2,' CKWFL=',F8.2,
 &
 AT TIME = ',F6.1)
RETURN
END

* SUBROUTINE DOWNFL

FORMAL PARAMETERS: (I=input, O=output, C=control, IN=init, T=time)

name type meaning (unit) class

* I I4 Compartment index (-) I *
* KSAT R4 Saturated hydraulic conductivity (cm d-1) I *
* FLIN R4 Flux into soil compartment (mm d-1) I *
* TRWL R4 Array of actual transpiration rate/layer (mm d-1) I *

SUBROUTINE DOWNFL
* EVSWS R4 Actual evaporation rate soil compartment 1 (m d-1) I *
* WL R4 Actual water content (mm) I *
* WLFC R4 Array amount of water per soil compartment at 'field I *
* capacity' (mm) I *
* DELT R4 Time step of integration (d) T *
* FLOUT R4 Flux out of soil compartment (mm d-1) O *

SUBROUTINE DNFL(I,SWIC,KSAT,FLIN,TRWL,EVSWS, WL, DFLUX, WLFC, &
DELT,FLOUT)

IMPLICIT REAL(A-Z)
INTEGER I,SWIC
SAVE
IF (SWIC.EQ.0) THEN
IF (I.EQ.1) THEN
 FLOUT = MIN(10.*KSAT,MAX(0.,FLIN-EVSWS-TRWL+(WL-WLFC)/DELT))
ELSE
 FLOUT = MIN(10.*KSAT,MAX(0.,FLIN-TRWL+(WL-WLFC)/DELT))
END IF
ELSE
 FLOUT = DFLUX
END IF
RETURN
END

SUBROUTINE BACKFL

FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time)

name type meaning (unit) class

I I4 Compartment index (-) I *
* WL R4 Actual water content (mm) I *
* FLIN R4 Flux into soil compartment (mm d-1) I *
* FLOUT R4 Flux out of soil compartment (mm d-1) I *
* EVSWS R4 Actual evaporation rate soil compartment 1 (m d-1) I *
* TRWL R4 Array of actual transpiration rate/layer (mm d-1) I *
* WLST R4 Array amount of water per soil compartment at *
* saturation (mm) I *
* DELT R4 Time step of integration (d) T *
* FLNEW R4 Boundary flow between soil compartments recalculated *
* via subroutine BACKFL (mm d-1) O *
* HLP R4 Help variable (mm) O *

SUBROUTINE BACKFL(I,NL,SWIC,WL,FLIN,FLOUT,UDFLUX,EVSWS,TRWL, &
WLST,DELT,FLNEW,HLP)

IMPLICIT REAL(A-Z)
INTEGER I,NL,SWIC
REAL UDFLUX(NL+1)
SAVE
HLP = 0.
IF (SWIC.EQ.0) THEN
IF (I.EQ.1) THEN
 HLP = WL+(FLIN-FLOUT-EVSWS-TRWL)*DELT
ELSE
 HLP = WL+(FLIN-FLOUT-TRWL)*DELT
END IF

IF (HLP.GT.WLST) THEN
 FLNEW = FLIN-(HLP-WLST)/DELT
ELSE
 FLNEW = FLIN
END IF
ELSE
 IF (I.EQ.1) THEN
 HLP = WL+(FLIN-FLOUT-EVSWS-TRWL+UDFLUX(I))*DELT
 ELSE
 HLP = WL+(UDFLUX(I)-FLIN-FLOUT-TRWL-UDFLUX(1-ll)*DELT
 END IF
 IF (HLP.GT.WLST) THEN
 FLNEW = FLIN-(HLP-WLST)/DELT
 ELSE
 FLNEW = FLIN
 END IF
ENDIF
RETURN
END

*
* SUBROUTINE ETPOT-1
* Author: B.A.M. Bouman
* Version: 2.0
* Date: November 1993
* Slightly modified by M.V.R. Murty
* May 2000
* Purpose: Calculation of Penman reference value for potential evapo-
* transpiration of a reference crop (mostly from formulation
* as given in van Laar et al 1992).
* Calculation of potential transpiration of a rice crop (with
* a soil or a water layer background), and of potential
* evaporation of soil surfaces and of open water.
* Simulation of crop growth for potential and water-limited
* production situations (as applied to spring wheat),
* CABO-DLO report 27. Wageningen (The Netherlands): CABO-DLO.
*
* FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time)
* name type meaning (unit) class
* SWLWL I4 Switch to select production environment (-) C
* ITIM I4 Time of simulation (d) T
* ITRT I4 Time of transplanting (d) T
* ANGA R4 Constant A in Angstrom formulae (-) I
* ANGB R4 Constant B in Angstrom formulae (-) I
* RDT R4 Daily solar radiation (J m-2 d-1) I
* DSO R4 Daily extraterrestrial radiation (J m-2 d-1) I
* TAV R4 Average daily temperature (°C) I
* VP R4 Early morning vapor pressure (kPa) I
* WN R4 Daily average windspeed (m s-1) I
* LAI R4 Apparent leaf area index (incl. stem area) (ha ha-1) I
* WCLQT R4 Array of actual soil water contents/layer (cm3 cm-3) I

*
WCST R4 Array of water content saturation/layer (cm3 cm-3)
WLO R4 Amount of ponded water (mm)
TRC R4 Potential transpiration rate (mm d-1)
EVSC R4 Potential soil evaporation rate (mm d-1)

FATAL ERROR CHECKS: none
FILE usage: none

IMPLICIT REAL(A-Z)
REAL WCL(1) ,WCST(1)
SAVE

*—Conversion from kpa -> mbar
VAPOR = VP*10.
WIND = WN
LHVAP = 2.4E6
PSYCH = 0.67
BOLTZM = 5.668E-8
ALBDS = 0.25
ALBOW = 0.05
ALBC = 0.25
WCUP = WCL(1)
WCSTUP = WCST(1)

SVP = 6.11*EXP(17.4*TAV/(TAV+239.))
SLOPE = 4158.6*SVP/(TAV+239.)**2
ALBS = ALBDS*(1.-0.5*WCUP/WCSTUP)
ALB = ALBS*EXP(-0.5*LAI)+ALBC*(1.-EXP(-0.5*LAI))
ALBWL = ALBOW*EXP(-0.5*LAI)+ALBC*(1.-EXP(-0.5*LAI))
CLEAR = LIMIT(0.,1.,((RDT/DSO)-ANGA)/ANGB)
FCLEAR = 0.1+0.9*CLEAR
FVAP = 0.56-0.079*SQRT(VAPOR)
BBRAD = BOLTZM*(TAV+273.)**4
RLWN = BBRAD*FVAP*FCLEAR*86400.
NRAD = (1.-ALB)*RDT-RLWN
NRADWL = (1.-ALBWL)*RDT-RLWN
NRADOW = (1.-ALBOW)*RDT-RLWN
WDF = 0.263*(1.0+0.54*WIND)
WDFOW = 0.263*(0.5+0.54*WIND)
DRYP = (SVP-VAPOR)*WDF
DRYPW = (SVP-VAPOR)*WDFOW

*—Calculation of EVR and EVD
EVD = DRYP*PSYCH/(SLOPE+PSYCH)
EVDW = DRYPW*PSYCH/(SLOPE+PSYCH)
EVR = (1./LHVAP)*(SLOPE/(SLOPE+PSYCH))*NRAD
EVRWL = (1./LHVAP)*(SLOPE/(SLOPE+PSYCH))*NRADWL
EVRROW = (1./LHVAP)*(SLOPE/(SLOPE+PSYCH))*NRADOW
---Calculation of transpiration and evaporation of crop---

--Crop transpiration with water layer
TRCW = EVRW*(1.-EXP(-0.5*LAI))+EVD*(MIN(2.5,LAI))

--Crop transpiration with soil background
TRCS = EVR*(1.-EXP(-0.5*LAI))+EVD*(MIN(2.5,LAI))

--Soil evaporation with water layer
EVSCWL = EXP(-0.5*LAI)*(EVRWL+EVD)

--Soil evaporation with soil background
EVSCS = EXP(-0.5*LAI)*(EVR+EVD)

--Open water evaporation
EVSCOW = EVROW+EVDOW

RETURN
END

---SUBROUTINE ASTRO---

Purpose: This subroutine calculates astronomic daylength, diurnal radiation characteristics, such as the daily integral of sine of solar elevation, and solar constant.

FORMAL PARAMETERS: (I=input, O=output, C=control, IN=init, T=time)

name type meaning (unit) class

DOY R4 Daynumber (January 1 = 1) (-) I
LAT R4 Latitude of site (dec. degr.) I
SC R4 Solar constant (J m-2 s-1) O
DSO R4 Daily extraterrestrial radiation (J m-2 d-1) O
SINLD R4 Seasonal offset of sine of solar height (-) O
COSLD R4 Amplitude of sine of solar height (-) O
DAYL R4 Astronomic daylength (base = 0 degrees) (h) O
DSINB R4 Daily total of sine of solar height (s) O
DSINBE R4 Daily total of effective solar height (s) O

FATAL ERROR CHECKS (execution terminated, message)

condition: LAT > 67, LAT < -67

FILE usage: none

---SUBROUTINE ASTRO(DOY, LAT, SC, DSO, SINLDF, COSLD, DAYL, DSINBF, DSINBE)---

IMPLICIT REAL(A-Z)
SAVE

PI = 3.141592654
RAD = PI/180.

Check on input range of parameters

IF (LAT.GT.67.) STOP 'ERROR IN ASTRO: LAT> 67' IF (LAT.LT.-67.) STOP 'ERROR IN ASTRO: LAT<-67'

Declination of the sun as function of daynumber (DOY)

DEC = -ASIN(SIN(23.45*RAD)*COS(2.*PI*(DOY+10.)/365.))
*— SINLD, COSLD and AOB are intermediate variables

\[
\begin{align*}
\text{SINLD} &= \sin(\text{RAD} \cdot \text{LAT}) \cdot \sin(\text{DEC}) \\
\text{COSLD} &= \cos(\text{RAD} \cdot \text{LAT}) \cdot \cos(\text{DEC}) \\
\text{AOB} &= \text{SINLD} / \text{COSLD}
\end{align*}
\]

*— Daylength (DAYL)
\[
\text{DAYL} = 12.0 \cdot (1. + 2. \cdot \text{ASIN}(\text{AOB}) / \pi)
\]

\[
\begin{align*}
\text{DSINB} &= 3600. \cdot (\text{DAYL} \cdot \text{SINLD} + 24. \cdot \text{COSLD} \cdot \sqrt{1. - \text{AOB} \cdot \text{AOB}} / \pi) \\
\text{DSINBE} &= 3600. \cdot (\text{DAYL} \cdot (\text{SINLD} + 0.4 \cdot (\text{SINLD} \cdot \text{SINLD} + \text{COSLD} \cdot \text{COSLD} \cdot 0.5)) \\
&\quad + 12.0 \cdot \text{COSLD} \cdot (2.0 + 3.0 \cdot 0.4 \cdot \text{SINLD} \cdot \sqrt{1. - \text{AOB} \cdot \text{AOB}} / \pi)
\end{align*}
\]

*— Solar constant (SC) and daily extraterrestrial radiation (DSO)
\[
\begin{align*}
\text{SC} &= 1370. \cdot (1. + 0.033 \cdot \cos(2. \cdot \text{PI} \cdot \text{DOY} / 365.)) \\
\text{DSO} &= \text{SC} \cdot \text{DSINB}
\end{align*}
\]

RETURN
END
Appendix 2. Example of input file for UPLAND model by Murty and Kondo.

* Switches:
* Drainage switch: free draining (1); impeded drainage (0)
 SWITFD = 1
* Irrigation switch: no irrigation (0); irrigation read from table (1);
 * irrigation if ponded water depth drops below minimum value (2)
 SWITIR = 1
* Conductivity switch: van Genuchten parameters (1);
 * Power function (2)
 SWITKH = 1

* Number of soil layers (maximum is 10)
 NL = 5
 TRWL = 5*0.0

* From the phytotron (sat> content)New
 RFDDTB = 0.1, 0.05, 0.25, 0.1, 0.45, 0.4, 0.65, 0.9, 1.0, 1.0, 1.1, 1.1

* Initial nitrate content of soil
 NCONTI = 5*0.001
* Bulk density layerwise
 BDSOIL = 1.1, 1.3, 1.2, 1.1, 1.1
* Parameters for nitrate equilibrium
 PARAA = 5*0.0
 PARAB = 5*0.
 PARAC = 5*0.
 PARAD = 5*0.0
 SET = 5*1.0
* Leaf area as a forcing function
 LAITB = 1.0, 0.0, 0.365, 0.0
* Nitrate application rate (kg/ha)
 NAPPTB = 0.0, 0.0, 95.0, 0.0, 96.0, 20.0, 97.0, 0.0, 365.0, 0.0
* Thickness of soil compartments (m)
 TKL = 5*0.20

* Irrigation table, amount of irrigation (y in mm) for a given calendar
day (x), used if SWITIR = 1
 RIRRIT = 0., 20., 366., 20.

* Irrigation parameter, used if SWITIR = 2, i.e., amount of irrigation
 * If ponded water depth drops below WL0MIN (mm)
 IRRI = 90.

* Saturated hydraulic conductivity
 KST = 43.5, 7.7, 7.7, 7.4, 208.
* van Genuchten parameters
 VGA = 0.00456, 0.0322, 0.0211, 0.0218, 0.1827, 0.77218
 VGL = 0.5, -1.5, 0.5, -7.0, 0.5
 VGN = 1.15095, 1.1559, 1.12044, 1.1478, 1.13307
 VGR = 5*0.01
* Power function parameter (needed if SWITKH = 2)
 \(PN = 3^{-2.5}, 3^{-2.5}, 2^{-2.5}, 2^{-2.5}, -2.5 \)

* Saturated volumetric water content
 \(WCST = 0.57, 0.65, 0.68, 0.67, 0.60 \)

* Initial volumetric water content
 \(WCLI = 0.3202, 0.4765, 0.5037, 0.5835, 0.5835 \)

* Ponded water depth (mm)
 \(WLOMX = 100. \)

* Minimum ponded water depth (mm)
 \(WLOMIN = 50. \)

* Initial ponded water depth (mm)
 \(WLOI = 0. \)
Appendix 3. Timer file generated by FST translator version 1.15.

* contains.
* - The used DRIVER and TRACE in case of GENERAL translation
* - The TIMER variables used in both translation modes
* - Additional TIMER variables in case of GENERAL translation
* - The WEATHER control variables if weather data are used
* - Miscellaneous FSE variables in case of FSE translation

* TIMER variables used in GENERAL and FSE translation modes

STTIME = 85. ! start time
FINTIM = 180. ! finish time
DELT = 1. ! time step (for Runge-Kutta first guess)
PRDEL = 1. ! output time step
IPFORM = 4 ! code for output table format:
 ! 4 = spaces between columns
 ! 5 = TABs between columns (spreadsheet output)
 ! 6 = two-column output

MULTIP = 1.
ANGA = 0.29
ANGB = 0.42

! The string array PRSEL contains the output variables for which
! formatted tables have to be made. One or more times there is a
! series of variable names terminated by the word <TABLE>
! The translator writes the variables in each PRINT statement to
* PRSEL = ! a separate table

COPINF = 'N' ! Switch variable whether to copy the input files
 ! to the output file ('N' = do not copy,
 ! 'Y' = copy)
DELTMP = 'N' ! Switch variable what should be done with the
 ! temporary output file ('N' = do not delete,
 ! 'Y' = delete)
IFLAG = 1103 ! Indicates where weather error and warnings
 ! go (1101 means errors and warnings to log
 ! file, errors to screen, see FSE manual)
* IOBSD = 1991,182 ! List of observation data for which output is
 ! required. The list should consist of pairs
 ! <year>,<day> in combination

* WEATHER control variables

WTRDIR = ' ' ! Country code
CNTN = 'phil' ! Station code
ISTM = 2 ! Year
IYEAR = 1997 !
SWIWLPL = 3
Appendix 4. File names to be used by FSE 2.0.

* The input files (except FILEIR) may be used in reruns.
* Up to five input data files may be used (FILEI1-5).

FILEON = 'RESULTS.OUT' ! Normal output file
FILEOL = 'MODEL.LOG' ! Log file
FILEIR = 'RERUNS.DAT' ! Reruns file
FILEIT = 'TIMER.DAT' ! File with timer data
FILEI1 = ' ' ! First input data file (not used)
FILEI2 = 'soil.dat' ! Second input data file (soil)
FILEI3 = ' ' ! Third input data file (not used)
FILEI4 = ' ' ! Fourth input data file (not used)
FILEI5 = ' ' ! Fifth input data file (not used)