The International Rice Research Institute (IRRI) was established in 1960 by the Ford and Rockefeller Foundations with the help and approval of the Government of the Philippines. Today IRRI is one of the 13 nonprofit International research and training centers supported by the Consultative Group on International Agricultural Research (CGIAR). The CGIAR is sponsored by the Food and Agriculture Organization (FAO) of the United Nations, the International Bank for Reconstruction and Development (World Bank), and the United Nations Development Programme (UNDP). The CGIAR consists of 50 donor countries, international and regional organizations, and private foundations.

IRRI receives support, through the CGIAR, from a number of donors including the Asian Development Bank, the European Economic Community, the Ford Foundation, the International Development Research Centre, the International Fund for Agricultural Development, the OPEC Special Fund, the Rockefeller Foundation, the United Nations Development Programme, the World Bank, and the International aid agencies of the following governments, Australia, Belgium, Canada, China, Denmark, France, Federal Republic of Germany, India, Italy, Japan, Mexico, Netherlands, New Zealand, Norway, Philippines, Saudi Arabia, Spain, Sweden, Switzerland, United Kingdom, and United States.

The responsibility for this publication rests with the International Rice Research Institute.

Copyright © International Rice Research Institute 1987.

All rights reserved. Except for quotations of short passages for the purpose of criticism and review, no part of this publication may be reproduced, stored in retrieval systems, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior permission of IRRI. This permission will not be unreasonably withheld for use for noncommercial purposes. IRRI does not require payment for the noncommercial use of its published works, and hopes that this copyright declaration will not diminish the bonafide use of its research findings in agricultural research and development.

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of IRRI concerning the legal status of any country, territory, city, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.

ISBN 971-104-169-3
Contents

The Cowpea Crop 1
 The cowpea crop 3
 The cowpea plant 11
 The seed 21
 Seedling growth 29
 Growth stages 37
 The roots 49
 Root nodules and nitrogen fixing 57
 The shoot - leaves and branches 65
 The shoot - flowers and seed pods 71
 Dry matter production 79
Growing Cowpea 87
 Environment 89
 Water 97
 Choosing the right variety 103
 Tillage and planting 109
 Fertilizer and lime 123
 Harvesting and storage 133
Increasing Yields and Profits 143
 Yield components 145
 Production factors 153
 Yield reducers — weeds 161
 Yield reducers — insect pests 173
 Yield reducers — diseases 185
Cowpea in Other Cropping Systems 199
 Sequence cropping 201
 Intercropping 207
 Strip-cropping 215
Rice and rice-based cropping systems occupy a position of overwhelming importance in global food production. Legume crops such as cowpea fit well into these systems, helping to increase productivity by yielding more food from the same land area.

Cowpea grown either before or after rice enriches the soil, helps to break the pest and disease cycle that occurs in continuous rice cropping, and adds to farm income. Nutritionally, cowpea complements rice, adding protein to largely starchy subsistence diets. Grown for centuries in the tropics, cowpea is well adapted to prevailing environmental stresses. The crop tolerates drought and can grow on poor, even acid soils. Improved short or medium duration varieties from the International Institute of Tropical Agriculture (IITA) can be profitably fitted into a wide range of cropping systems as a food, fodder, or green manure crop requiring minimum inputs.

A Farmer’s Primer on Growing Cowpea on Rice Land explains the “hows” and “whys” of cowpea culture to farmers, extension workers, students, and technicians. The Primer is patterned after A Farmer’s Primer on Growing Rice - which has been translated into more than 30 languages - and is similarly designed for easy translation and co-publication in developing countries. The English text has been blocked off from the line drawings. The International Rice Research Institute (IRRI) will make complimentary sets of the illustrations available to cooperators, who may translate the text, strip the translations onto the illustrations, and print a translated edition on local presses.

The cowpea Primer was made possible by a collaborative project sponsored by IRRI and IITA. A companion volume is A Farmer’s Primer on Growing Soybean on Rice Land.

Ms. Vrinda Kumble of Editorial Consultants Services, New Delhi, India, edited both the cowpea and soybean Primers.

M.S. Swaminathan
Director General
International Rice Research Institute

Lawrence Stifel
Director General
International Institute of Tropical Agriculture
The cowpea crop
The cowpea crop

Why grow cowpea 5
Cowpea enriches the soil 6
Breaks the pest and disease cycle 7
 Adds to income 8
Cowpea as human food 9
Cowpea as fodder 10
Why grow cowpea

- Cowpea is a good crop to grow before or after rice.
- It can stand drought or heavy rain.
- It can grow on many kinds of soil, even acid soil, where mungbean and soybean cannot grow.
Cowpea enriches the soil

- Cowpea roots can fix nitrogen from the air for the plant to use.
- Some of this nitrogen is left behind in the soil for the next crop.
Breaks the pest and disease cycle

- Growing cowpea in rotation with rice breaks the pest and disease cycle for both crops because
 - most rice pests and diseases do not transfer to cowpea
 - most cowpea pests and diseases do not transfer to rice.
Adds to income

- In the off season after the rice harvest, cowpea cropping can create new jobs.
Cowpea as human food

- Cowpea can be eaten as greens, as a vegetable, and as a dried bean.
- Rice and cowpea eaten together make a balanced food. The nutrients lacking in each are supplied by the other.
Cowpea as fodder

- The whole plant can be used for fodder.
- Dried seed can be used for animal feed.
The cowpea plant

The cowpea plant 13
Plant types - growth habit 14
Plant types - uneven-maturing 15
Plant types - even-maturing 16
Cowpea varieties - growth duration 17
Cowpea varieties - uses 18
Vegetable types 19
Fodder types 20
The cowpea plant
Plant types —
growth habit

• The cowpea plant may be creeping, climbing, semi-erect, or erect.
Plant types — uneven-maturing

- Uneven-maturing (indeterminate) types twine or climb.
- They flower over a long period and pods do not mature at the same time.
- Rain during pod ripening may produce a new flush of flowers.
Plant types —
even-maturing

- Even-maturing (determinate) plant types grow erect.
- Most of the pods mature at the same time.
Cowpea varieties — growth duration

- Cowpea varieties differ widely in growth habit and duration.
- Choosing the right variety to fit a cropping system gives good returns.
Cowpea varieties — uses

- Seed types are grown for use as dry beans.
- Cowpea seed provides nutritious human food and animal feed.
Vegetable types produce good-tasting pods that are usually longer than seed types. Mature seeds can also be used fresh, like green peas.
Fodder types

- Fodder types have mostly leafy growth. They produce only a few pods.
- Dual types produce both seed and fodder.
The seed

Seed types 23
Parts of the seed 24
Stages of germination 25
Factors affecting germination — water, air, and warmth 26
Factors affecting germination — seed quality 27
Seed types

- Cowpea seeds vary in size, shape, color, and texture.
- Color may be white, black, red, or brown.
Parts of the seed

- Parts of the seed include the hilum, seed coat, cotyledons, and embryo.
Stages of germination

- The seed takes up water, swells, and begins to grow.
- The seed leaves supply food to the growing seedling for about one week.
Factors affecting germination — water, air, and warmth

- To sprout and grow, the seed needs water, air, and warmth.
- With too little water, the seed will not start to grow. With too much water, it will rot.
- Without air the seed will mold or decay.
- Too much heat or cold will kill the growing embryo.
Factors affecting germination —
seed quality

For good germination, seed should be fresh, clean, and healthy.
Treating seed with fungicide will help even germination.
Seed for planting should be stored no more than 12 months.
Factors affecting seedling growth — water

- Soil moisture is essential for even germination and seedling growth.
- Roots grow poorly in dry soil and cannot absorb nutrients for the plant.
Factors affecting seedling growth — temperature

- Seedlings grow fast in warm weather. Cold weather slows down growth and seedlings cannot compete with weeds.
Factors affecting seedling growth — light

- Bright sunlight helps vigorous seedling growth. Plant cowpea in sunny areas, away from shade trees.
Factors affecting seedling growth — nutrients

- Usually cowpea can grow on nutrients left over in the soil from the rice crop. But in poor soils, fertilizer added at planting starts rapid growth.
Factors affecting seedling growth — plant density

- Seedlings growing too close together grow too tall and lodge easily.
- Seedlings spaced too far apart allow too much weed growth.
Factors affecting seedling growth — weeds and insects

- Weeds rob seedlings of nutrients.
- Insect pests that eat young leaves and stems may kill seedlings.
Growth stages

Growth stages 39
Growth stages 40
Vegetative phase 41
Vegetative phase 42
Vegetative phase 43
Vegetative phase 44
Reproductive phase – flowering 45
Reproductive phase – pod formation 46
Reproductive phase – ripening and maturity 47
Growth stages

- The cowpea plant goes through eleven growth stages from seed germination to maturity.
Growth stages

- Sowing to harvest may take 55 to 110 days, depending on variety, season, and growing conditions.
Vegetative phase

- The vegetative phase lasts from germination until the first flower appears, about 40 days after planting.
- The first pair of true leaves unfolds on the ninth to eleventh day after planting.
Vegetative phase

- At 13 to 15 days after planting, the first leaf with three leaflets unrolls.
- Nodules begin to form on the roots.
Vegetative phase

- From 17 to 40 days after planting, leaves and roots grow rapidly.
Vegetative phase

- Root nodules develop to the maximum and the plant fixes nitrogen at a high rate.
Reproductive phase — flowering

- Flowering lasts from when the first flower appears until full bloom.
Reproductive phase — pod formation

- Pods form and begin filling after the seventh leaf unrolls.
Reproductive phase — ripening and maturity

- Fully developed pods are dark green.
- As they ripen and mature, they change to brown, purple, or gray.
The roots

Origin of roots 51
Functions of roots 52
Root distribution 53
Root development – emergence to flowering 54
Root development – flowering to pod ripening 55
Origin of roots

- The radicle grows into the primary root, from which other roots grow.
- The older parts of a root are brown. New and young parts are white.
Functions of roots

- Roots transport water and nutrients to leaves, flowers, and pods.
- They support the upper parts of the plant.
- Roots in cowpea are also sites of nitrogen fixation.
Root distribution

- The roots grow rapidly as soil water dries out.
- Most of the roots remain in the upper soil layer. Only a few go down into the lower layer.
Root development — emergence to flowering

- The side roots spread close to the soil surface for several weeks. The wider they spread, the better is their nutrient and water uptake early in the season.
• The lower roots grow deep into the subsoil as soil water dries out.
• The deeper they grow, the more water they can absorb for crop growth and yield.
Root nodules and nitrogen fixing

Root nodules 59
Root nodules 60
Nitrogen fixing 61
Conditions affecting nitrogen fixing – soil nitrogen and phosphorus 62
Conditions affecting nitrogen fixing – temperature and daylength 63
Conditions affecting nitrogen fixing – soil rhizobia 64
Root nodules

• Nodules are small lumps that grow on cowpea roots.
• Soil bacteria called rhizobia live in these nodules and fix nitrogen from the air, which the plant uses.
Root nodules

- Healthy nodules are important to good crop growth.
- Nodules appear on the roots about 15 days after seedlings emerge. Nodulation reaches a peak during flowering and early pod formation.
Nitrogen fixing

- Nitrogen fixing begins soon after nodules form. The fixing rate is highest during flowering and early pod formation.
- After this nodules begin to die and nitrogen fixing decreases.
Conditions affecting nitrogen fixing — soil nitrogen and phosphorus

- Too much soil nitrogen reduces nodule growth and activity.
- Lack of phosphorus also reduces nodule growth.
Conditions affecting nitrogen fixing — temperature and daylength

- Warm days and cool nights increase nodule activity.
- Daylength should be less than 16 hours.
Conditions affecting nitrogen fixing — soil rhizobia

- In fields where legumes have not been grown for more than 5 years, cowpea seed must be treated with Rhizobium culture before planting.
- Culture is available in packets at farm supply centers or from extension agencies.
The shoot — leaves and branches

The cowpea leaf 67
Canopy development 68
Loss of leaves 69
Branches 70
The cowpea leaf

- The green leaves trap sunlight to manufacture food for the plant, using water from the soil and carbon dioxide from the air.
Canopy development

- In a healthy cowpea crop, the upper leaves form an umbrella, or canopy, shading the ground between rows.
- Some sunlight should get through to the lower leaves.
Loss of leaves

• Loss of leaves from lack of water or insect damage means less carbohydrate to nourish the plant.
• The plant will produce fewer flowers and pods.
• Branching starts 2 to 3 weeks after emergence.
• Branches are useful in making up some yield where plant numbers are low. But they cannot make up for poor plant stands.
The shoot — flowers and seed pods

Flowering 73
Pod formation 74
Flower and pod drop 75
Stages of pod filling 76
Pod filling 77
Flowering

- The first flower stalk develops from the middle of the plant, in the axil between leaf and stem.
- Flowering progresses upwards and downwards from here.
Pod formation

- A pod begins to form when the male cell from the pollen unites with the egg in the ovary.
- Usually only two flowers on each stalk develop into pods.
Flower and pod drop

- Fifty to sixty percent of the buds and flowers drop off the plant. Sometimes young pods also drop.
- Proper water and nutrient supply at flowering and pod filling will reduce flower and pod drop and increase number of mature pods.
Stages of pod filling

- Starch and protein builds up in the seeds. The pod wall thickens and becomes tough as the pod develops.
Pod filling

- Seeds develop over 20 to 25 days. They fill slowly for the first few days and then rapidly.
Dry matter production

Dry matter production 81
Factors affecting dry matter production – leaf area 82
Factors affecting dry matter production – sunlight 83
Factors affecting dry matter production – water 84
Factors affecting dry matter production – nutrients 85
Dry matter production

- Fresh plant weight minus water gives total dry matter in a crop.
- Dry matter accumulation is important to the total yield of both seed and fodder.
- Cowpea plant dry matter contains mostly starch, fiber, and protein.
Factors affecting dry matter production — leaf area

- Leaf area depends on number of plants per square meter, and on water and nutrient supply.
- A high leaf area index will give higher dry matter production.
Factors affecting dry matter production — sunlight

- Bright sunlight increases dry matter produced.
- When cowpea is grown in shade, as on a coconut plantation, dry matter will be reduced as shade increases.
Factors affecting dry matter production — water

- Maximum dry matter is produced when the plant gets the right amount of moisture.
- With too little water, the leaf pores close, reducing food made by the leaves.
- If soil is waterlogged the roots cannot absorb nutrients.
Factors affecting dry matter production — nutrients

- For maximum dry matter production, all nutrients are needed in the right amounts.
- Lack of any nutrient will sharply reduce dry matter, even if the other nutrients are well supplied.
Growing cowpea
Growing cowpea — environment

Temperature 91
Rainfall 92
Daylength 93
Light intensity 94
Soil 95
Cowpea is a tropical crop suited to hot, humid climates and semi-dry areas. The best temperature for growth is 20 to 35°C. Cowpea can stand low temperatures, down to 15°C, but not frost.
Rainfall

- Cowpea can grow in both low and high rainfall areas. But standing water will kill the plants.
- Drought during early growth stages will reduce yields.
- Rain during pod ripening gives poor seed quality.
Daylength

- Flowering is best when days are 8 to 14 hours long.
- Varieties that grow well under any daylength can be used throughout the tropics.
Most varieties grow poorly in shade or reduced light. Leaves turn pale and stems are weak.

Shade-tolerant varieties are available for growing with plantation crops such as coconut, oil palm, and rubber.
Soil

Cowpea can grow on many kinds of soil, from sandy soil to clayey black soil.
It can grow on puddled wetland rice soils and even on acid soils where mungbean and soybean cannot grow.
Growing cowpea — water

Water needs 99
When water is most needed 100
Effects of drought 101
Effects of too much water 102
Water needs

- Although cowpea can stand drought, water supplied during critical stages will give higher yields.
When water is most needed

- Cowpea needs water most
 - at planting
 - during early seedling growth
 - during flowering
 - during pod filling.
Effects of drought

- Drought can
 - stunt plant growth
 - reduce nodulation and nitrogen fixation
 - decrease protein content of seed
 - reduce total yield.
Effects of too much water

- Too much water can
 - delay germination and rot the seed
 - reduce nitrogen fixation
 - reduce total yield.
Growing cowpea — choosing the right variety

Choosing the right variety – before rice 105
Choosing the right variety – after rice 106
Choosing the right variety – after rice 107
Choosing the right variety – pest and disease resistance 108
Choosing the right variety — before rice

- Cowpea varieties planted before rice should be
 - erect growing, with most pods maturing at the same time
 - early-maturing
 - able to stand drought during early growth stages
 - able to stand excess water during flowering and pod filling.
Choosing the right variety — after rice

• Cowpea varieties planted after rice should be
 – indeterminate types, with pods maturing over several days
 – medium-duration
 – resistant to wilt disease
 – able to stand excess water during early growth
 – able to stand drought at flowering and pod filling.
Choosing the right variety — after rice

- Relay-cropped varieties should have especially vigorous seedlings.
Choosing the right variety — pest and disease resistance

- Some cowpea varieties resist insect and disease damage better than others.
- Choose varieties that are least damaged by the major pests and diseases in your area.
Growing cowpea – tillage and planting

Preparing the land – high tillage 111
Preparing the land – zero tillage 112
Planting system 113
When to plant as a sole crop 114
When to plant as a relay crop 115
Row spacing – sole crop 116
Row spacing – intercrop 117
Mixed intercropping 118
Planting method 119
Planting depth 120
Seeding rate 121
Plant density 122
Preparing the land — high tillage

- High tillage is common in irrigated areas where water is easily available.
- High tillage
 - airs the soil
 - helps seeds germinate and roots grow deep
 - controls weeds.
- But high tillage
 - is costly
 - delays planting
 - dries out the soil.
Preparing the land — zero tillage

- Zero tillage is common in rainfed areas, especially after lowland rice.
- Zero tillage
 - saves labor and costs
 - allows planting at once
 - makes full use of soil moisture.
- But zero tillage
 - does not air the soil
 - lets weeds grow
 - does not help roots grow deep.
Planting system

- Cowpea can be planted as a sole crop before or after rice.
- It can also be relay cropped or intercropped with upland rice.
When to plant as a sole crop

- As a sole crop before rice, plant cowpea at the start of the rainy season, in May.
- After rice, plant cowpea in November, after the harvest of rice.
When to plant as a relay crop

- For a relay crop, plant cowpea in standing rice, about 10 days before the rice harvest.
Row spacing — sole crop

- Space between rows varies with plant type and season.
- Use narrow row spacing for determinate types and in the dry season.
- Use wide row spacing for indeterminate types and in the wet season.
Row spacing — intercrop

- In row intercropping at least one crop is planted in rows.
Mixed intercropping

- Mixed intercropping uses no distinct row arrangement or row spacing.
- As a fodder crop, cowpea is often mixed intercropped with cereal crops.
Planting method

- Drill seed in rows by hand or by animal-drawn seeder.
- Dibble seed at the base of rice stubble after rice harvest.
- For mixed or relay crops, broadcast seed in tilled fields and cover with soil. Or broadcast without tilling, directly in wet fields.
Planting depth

- Sowing 3 to 5 cm deep is good for most varieties.
- Planting more than 6 cm deep delays emergence. Seed may rot and plant stands will be uneven.
Seeding rate

- Seeding rate varies with seed size and cropping system.
For a sole crop of cowpea the best plant density is
- 15 to 20 plants per meter row for early, determinate varieties.
- 10 to 12 plants per meter row for medium-duration, indeterminate varieties.
Fertilizer and lime

Fertilizer needs 125
Organic fertilizer 126
Fertilizer – nitrogen 127
Fertilizer – phosphorus 128
Fertilizer – potassium 129
Fertilizer – micronutrients 130
Lime 131
The cowpea crop usually does not need fertilizer. It uses nitrogen from the air and other nutrients left in the soil from the previous crop. In poor soils, however, adding fertilizer will improve yields.
Organic fertilizer

Made of farmyard manure like:

- Dry leaves
- Chicken manure
- Straw
- Cow manure
- Dry grass
- Horse manure

- Add organic fertilizer in any amount possible.
- Large amounts are needed to improve yields significantly.
- But even smaller amounts improve soil structure and help plant growth.
Fertilizer — nitrogen

- Cowpea needs no added nitrogen fertilizer.
- In very poor soils, add 30 kg urea per hectare at planting to help start the crop.
Fertilizer — phosphorus

- Phosphorus is needed for good nodulation and nitrogen fixation.
- If soil is low in phosphorus, add 180 kg single superphosphate at planting time.

Add 180 kg P/ha
Fertilizer — potassium

- Most tropical soils have enough potassium and rarely need added potash.
- If soil tests low in potassium, add 50 to 60 kg potash per hectare.
Cowpea also needs micronutrients for proper growth and good yields.
Lime

- Cowpea can usually stand acid soils. But strongly acid soils, with pH less than 4.5, need added lime to give high yields.
Harvesting and storage

When to harvest – vegetable 135
When to harvest – seed 136
When to harvest – fodder 137
Seed drying 138
Threshing 139
Storage 140
Controlling storage pests 141
When to harvest — vegetable

- For use as a green vegetable, hand-pick cowpea pods within 12 to 14 days after flowering, when pods are still tender.
- Pick every 3 or 4 days after that.
When to harvest — seed

- Varieties maturing evenly can be harvested within 20 to 25 days after flowering, when most of the pods are dry.
- For varieties maturing unevenly, two or three pickings are needed.
When to harvest — fodder

- Harvest cowpea grown for fodder at flowering to early pod formation stage for maximum dry matter and crude protein.
- Cut at the base of the plant.
Seed drying

- Harvested pods are dried 3 to 4 days under the sun or in a dryer until the moisture content is about 12 percent.
Threshing

- Hand-threshing is done by beating with a stick.
- Sometimes cattle may be used to trample dry pods.
- For large-scale production, cowpeas can be machine-threshed.
Storage

- Seed for storage should be sundried or machine-dried thoroughly.
- For cold storage, set temperature at 6 to 8°C.
Controlling storage pests

- The bean weevil can severely damage stored cowpea seed.
- Mix seeds with vegetable oil to protect against this pest.
Increasing yields and profits
Increasing yields and profits — yield components

Yield components 147
Yield components – plants per unit area 148
Yield components – pods per plant 149
Yield components – seeds per pod 150
Yield components – seed weight 151
Yield components

Each yield component contributes to the total yield. Reducing any component reduces yields.

Good management at all stages is needed for high yields, because growing conditions affect each stage of development.

Some yield components are determined more by variety than by environment.
• Number of plants bearing mature pods will determine total number of pods.
Yield components — pods per plant

Number of pods per plant is determined from:

Flowering to Podding

Number of pods that mature depends on:

- Plant density
- Soil moisture
- Weather

• The number of pods per plant is the most important yield component.
• It is the most affected by growing conditions: plant density, soil moisture, and weather.
The number of seeds per pod is determined at flowering, when male pollen cells are transferred to the ovules in the pod. Fertilized ovules will develop into seeds.
Yield components — seed weight

Seed weight is determined during pod filling. It depends on variety, soil moisture, and nutrient supply.
Increasing yields and profits — production factors

Production factors 155
Making the most of soil moisture — tillage and planting time 156
Making the most of soil moisture — variety 157
Making the most of soil moisture — fertilizing and weeding 158
Increasing yields — using irrigation 159
• Cowpea is a low-cost crop to grow. With the right combination of production factors, yields and profits can be high.
• The right combination varies with season, location, and growing conditions.
Making the most of soil moisture — tillage and planting time

- In rainfed crops, making the best use of soil moisture is the key to high yields.
- Plant the cowpea crop at once after the rice harvest. Or plant as a relay crop in standing rice 10 days before harvest.
- Use zero tillage and narrow spacing between rows. High tillage and wide row spacing dry out the soil.
Making the most of soil moisture — variety

- Plant indeterminate varieties that mature unevenly.
- They yield more than determinate varieties in the dry season.
- At all times, plant varieties resistant to insect pests and diseases.
Making the most of soil moisture — fertilizing and weeding

- Add phosphorus at planting time for good nodule growth and nitrogen fixing.
- Weed at least twice during the first 40 days.
Increasing yields — using irrigation

- Where water is available, use high tillage and wide row spacing. Irrigate during early growth stages and flowering and pod filling.
- Grow determinate, high-yielding varieties that mature evenly.
Yield reducers — weeds

Yield loss to weeds 163
Weeds compete with cowpea 164
Weeds affect seedling growth 165
Controlling weeds – by handweeding 166
Controlling weeds – using cultural practices 167
Controlling weeds – using herbicides 168
Common cowpea weeds – grasses 169
Common cowpea weeds – sedges 170
Common cowpea weeds – broadleaf weeds 171
Yield loss to weeds

- Uncontrolled weeds may reduce cowpea yields by 60 to 70 percent. Seed yields may come down from 1000 to 300 kg per hectare. Fodder yields may come down from 10 tons to 3 tons per hectare.
Weeds compete with cowpea

- Weeds compete with cowpea for soil nutrients, soil water, and sunlight.
Weeds affect seedling growth

- Weeds do most harm in the first 40 days after planting.
- After the crop has flowered, weeds are not as damaging as at early stages.
Controlling weeds — by handweeding

- Weeding with a hand hoe is the most common practice among farmers.
- For best yields, weed 2 weeks after planting and just before flowering.
Controlling weeds — using cultural practices

- Two or three intercultivations with a hoe or animal-drawn tool or a tractor will control cowpea weeds.
- Close plant spacing keeps down weeds.
Controlling weeds — using herbicides

For large-scale cowpea production, chemicals can be used to control weeds.
If soil is moist, use herbicide before weeds emerge, just after planting cowpea.
Common cowpea weeds — grasses

- **Dryland**

- **Wetland**

 - *Rottboellia exaltata*
 - *Echinochloa colona*
Common cowpea weeds — sedges

Dryland

Cyperus iria

Wetland

Cyperus rotundus
Common cowpea weeds — broadleaf weeds

Dryland

Amaranthus spinosus

Wetland

Maluastrum coromandelianum
Yield reducers — insect pests

Yield loss to insect pests 175
Controlling pests — using cultural practices 176
Controlling pests — using insecticides 177
Controlling pests — planting resistant varieties 178
Combining pest control methods 179
Common insect pests of cowpea — at seedling stage 180
 At preflowering stage 181
 At flowering 182
 At pod formation stage 183
 Preflowering to pod filling 184
Yield loss to insect pests

- Insect pests are a serious threat to the cowpea crop. They can attack all parts of the plant at all stages of growth.
- Uncontrolled insects can destroy the crop.
Controlling pests — using cultural practices

- Cultural practices can help reduce insect numbers.
Controlling pests — using insecticides

All insecticides do not kill all insects. Choose the right one for the pest damaging your crop.

- Chemical insecticides effectively control many cowpea insects. Apply chemicals only as directed.
- Sprays are most needed at
 - 2 days after emergence
 - 12 days after emergence
 - flowering
 - 10 days later.
Controlling pests — planting resistant varieties

- Some cowpea varieties resist pest damage better than others.
- Planting resistant varieties is a low-cost way of reducing insect damage.
Combining pest control methods

- Several pest control methods can be combined:
 - using proper cultural practices
 - spraying the right insecticides at the right times
 - planting varieties that resist pest damage.
Common insect pests of cowpea — at seedling stage

- Scientific name: *Ophiomyia phaseoli*
- Damage: The maggot bores into the stem and tunnels toward the base, damaging the stem. The plant withers and dies.
- Control: Plant varieties less susceptible to beanfly in your area. Spray seedlings with insecticide 2 to 3 days after emergence.
At preflowering stage

- Scientific name: *Empoasca* species
- Damage: Leaf turns yellow at veins and margins, then curls into a cup.
- Control: Plant varieties less susceptible to leafhopper damage in your area. Spray insecticide at preflowering stage, if needed.
At flowering

- Scientific name: *Megalurothrips species*
- Damage: Open flowers are distorted and discolored. They drop off and no pods are formed. When thrips are severe, plants do not flower.
- Control: Plant less susceptible varieties. Spray insecticide at flowering.
At pod formation

- Scientific name: *Maruca testulalis*
- Damage: Larva eats through leaves, flowers, and pods, leaving webbing and frass on them. Seeds do not fill.
- Control: Plant resistant varieties. Spray insecticide 10 days after flowering begins.
Preflowering to pod filling

- Scientific name: *Aphis craccivora*
- Damage: Plant growth is stunted, leaves are distorted, and pods shrivel. No seed is produced. Aphids also carry cowpea mosaic virus disease.
- Control: Plant resistant varieties. Spray insecticide at pre-flowering stage.
Yield reducers — diseases

Yield loss to diseases 187
Controlling diseases — planting resistant varieties 188
Controlling diseases — using cultural practices 189
Controlling diseases — using chemicals 190
Common diseases of cowpea 191
 Fusarium wilt 191
 Cercospora leafspot 192
 Brown rust 193
 Brown blotch 194
 Powdery mildew 195
 Bacterial blight 196
 Cowpea (severe) mosaic virus 197
 Cowpea golden mosaic 198
Yield loss to diseases

- Fungi, viruses, and bacteria attack cowpea and can severely reduce plant stands and yields if not controlled.
Controlling diseases — planting resistant varieties

- Some cowpea varieties resist damage from certain diseases.
- Planting resistant varieties is a low-cost way of controlling disease.
Controlling diseases — using cultural practices

- Use cultural practices such as plowing, crop rotation, and intercropping to control diseases.
- Destroy crop residue because it may shelter and spread disease.
Controlling diseases — using chemicals

- Chemicals effectively control some diseases.
- To protect against soil-borne diseases, treat seed with fungicide before planting.
Common diseases of cowpea — Fusarium wilt

- Scientific name: *Fusarium oxysporum* f. sp *tracheiphilum*
- Symptoms: Leaves become limp and yellow, plants are stunted; young plants wilt rapidly, then die.
- Control: Plant resistant varieties. Treat seed with fungicide before planting.
Cercospora leafspot

- Scientific name: *Cercospora canescens*; *Cercospora cruenta*
- Symptoms: Round or roundish cherry-red to reddish brown sores, up to 10 mm across, appear on leaves.
- Control: Use clean seed and plant resistant varieties. Treat with fungicide.
Brown rust

- Scientific name: *Uromyces appendiculatus*
- Symptoms: Blisters develop on leaves, releasing powdery, reddish brown spores.
- Control: Plant resistant varieties.
Brown blotch

- Scientific name: *Colletotrichum capsici*
- Symptoms: Pods, leaf stems, and veins turn purplish brown. Flower stalks may crack. Pods twist and curl, do not develop.
Powdery mildew

- Scientific name: *Erysiphe polygoni*
- Symptoms: White patches, turning greyish, and spreading on leaves and other plant parts.
- Control: Plant resistant varieties. Use fungicide.
Bacterial blight

- Scientific name: *Xanthomonas vignicola*
- Symptoms: Tiny water-soaked dots appear on leaves; then the surrounding tissue dies, turning a tan to orange. Stems may crack and pods look water-soaked.
- Control: Use clean seed. Plant resistant varieties.
Cowpea (severe) mosaic virus

- Name: Cowpea (Severe) Mosaic Virus (CSMV)
- Symptoms: Leaves become mottled and distorted.
- Control: Use clean seed and plant resistant varieties. Control virus carriers such as beetles.
• Name: Cowpea Golden Mosaic
• Symptoms: Plants turn intense yellow; leaves become distorted and blistered; plants are stunted.
• Control: Plant resistant varieties; control the disease carrier, white fly (Bemisia sp.)
Cowpea in other cropping systems
Cowpea in other cropping systems — sequence cropping

Cowpea before maize 203
Cowpea before sorghum 204
Cowpea before cotton 205
Cowpea before wheat 206
Cowpea before maize

- Cowpea is planted at the start of the rains before the regular planting of maize.
- This practice not only improves soil fertility but also increases food production.
Cowpea before sorghum

- Cowpea is planted at the start of the rains. Sorghum is planted after the cowpea harvest.
Cowpea before cotton

- Cowpea can be planted before the regular planting of cotton at the start of the rainy season.
- It provides additional income and food for the farmer.
• The cowpea-wheat system can be practiced in subtropical Asia, where cowpea is planted in the rainy season and wheat is planted in winter.
Cowpea in other cropping systems — intercropping

Maize and cowpea 209
Sorghum and cowpea 210
Sugarcane and cowpea 211
Cassava and cowpea 212
Plantation crops and cowpea 213
Maize and cowpea

- Cowpea is planted between rows of the main crop, maize. Both crops are planted at the same time.
- This system insures against crop failure from drought and pests.
Sorghum and cowpea

- Cowpea can be planted between rows of sorghum.
Sugarcane and cowpea

- When sugarcane is intercropped with cowpea, two rows of cowpea are planted between rows of sugarcane.
Cassava and cowpea

- Two rows of cowpea can be planted between rows of cassava.
Plantation crops and cowpea

- Cowpea can be planted in the vacant spaces of plantation crops.
Cowpea in other cropping systems — strip-cropping

Strip-cropping maize and cowpea 217
Strip-cropping sorghum and cowpea 218
Strip-cropping maize and cowpea

- Maize and cowpea are planted in strips of six to eight rows. Row spacing is 75 cm for maize and 50 cm for cowpea.
Strip-cropping sorghum and cowpea

- Sorghum and cowpea are planted in strips of six to eight rows.